温室効果ガス排出削減への貢献

温室効果ガス排出の削減に向け、エネルギーの供給サイドではクリーンエネルギー化、

需要サイドでは、エネルギー利用の省エネ化や電化、さらに自家発電設備の導入による電源の分散化も進んでいます。

富士電機の強みは、省エネのキーデバイスであるパワー半導体を自社で開発・製造し、それを搭載したパワーエレクトロニクス 機器、それらを組み合わせたシステム、エンジニアリング・サービスをトータルで提供できることです。

エネルギーの供給サイドから需要サイドまで、サプライチェーン全体にわたり、温室効果ガス排出削減に貢献しています。

製品による社会のCO₂排出削減

富士電機は、産業革命前と比較した気温上昇を1.5℃に 抑えるため、自社製品による社会のCO。削減貢献量の目 標値を定め、企業活動を行っています。(詳細はP33 「環 境|を参照)

2021 年度セグメント別 CO₂削減貢献量 (万トン) 5.900超 4.544 食品流通 発電プラント 1,528 半道休 625 パワエレ

2021年度実績 2030年度目標

自動車

需要サイド

供給サイド

電力会社 発電事業者

パワエレ

発電プラント

半導体

625

電化率向上

パワーエレクトロニクス機器の小型化、高効率化

を追求してきた技術力を生かし、電動車向けパワー

半導体や船舶向け電気推進システムなどで電化

鉄道

食品流通

CO2削減貢献量 105

-----------------.

施設

2,286

クリーンエネルギーの主流化

地熱、水力、太陽光、風力、燃料電池など幅広いク リーンエネルギーのラインアップを持っています。 再生可能エネルギーを安定して供給するための電 力安定化技術を組み合わせ、クリーンエネルギー および分散型電源の拡大に貢献していきます。

抽埶発雷

太陽光発電

受変電設備

エネルギー供給の安定化

データセンターや工場などに対し、高効率な無停電電源装置や環境配慮型

受変電設備など幅広い製品・システムの供給と保守を含めた一括提案によっ

て、電力の安定供給・最適化と産業インフラの強靭化に貢献します。

エネルギーマネジメントシステム (EMS)

無停電電源装置

(UPS)

系統監視制御システム

パワーコンディショナ

省エネ機器・システムの普及

長年培ってきた計測制御技術による省エネ課題の見える化と、高効率の自社 製パワー半導体を搭載したパワーエレクトロニクス機器、駆動制御システム、 さらに熱エネルギーの有効活用による省エネ提案により、工場やビル、施設な どの省エネを図ります。

インバータ

EMSソリューション

半道休

率向上に貢献していきます。

電動車向けパワー半導体

船舶向け電気推進システム

ハイブリッドヒートポンプ

ノンリークショーケース

AIによるエネルギー需給の効率化・最適化

これまで国内外におけるスマートコミュニティ実証事業に取り組み、

電力グリッドの運用高度化のノウハウを蓄積し、エネルギー供給と利用効率の双方を最適化する技術が強みです。