アモルファスシリコン太陽電池の屋外発電特性

井原 卓郎(いはら たくろう) 西原 啓徳(にしはら ひろのり)

1 まえがき

プラスチックフィルムを基板とする SCAF (Series-Connection through Apertures formed on Film) セルには, 次のような特長がある。

- (1) 集積型直列接続構造であるため,システムに合わせた 出力電圧の設計が可能であり,モジュール間の配線が簡 単になる。
- (2) 柔軟性に富むプラスチックフィルムを基板として用い るため,軽曲面などへの適用も可能である。
- (3) 薄膜太陽電池であるため、モジュールの軽量化が可能 である。

しかし実用化のためには,これらの特長を生かしたモ ジュールの信頼性を確保するとともに,屋外運転環境下に おける発電特性を把握することが重要である。そこで,モ ジュールの信頼性評価のための各種加速試験を実施すると ともに,発電量に及ぼす設置方位や設置角度の影響,結晶 系太陽電池との挙動比較,アモルファス太陽電池のデバイ ス構造比較などを評価するための屋外発電試験を実施して いる。さらに,実際にモジュールを屋根材に適用した フィールドテストも行い,信頼性の確認,発電特性の把握 および課題の抽出を行っている。本稿では,(株)富士電機 総合研究所構内で実施している屋外発電試験およびフィー ルドテストの状況について報告する。

 各種太陽電池モジュールの屋外での発電特性 比較

太陽電池の性能は,擬似太陽光源(ソーラーシミュレー タ)を利用して評価し,標準条件での特性として表すのが 一般的である。標準条件は,日射強度:1kW/m²,モ ジュール温度:25 ,太陽光スペクトル:エアマス(AM) 1.5と規定されている。ところが,実際のフィールドでは このような標準条件下で太陽電池が動作することはほとん どなく,広範囲に変動する動作環境に応じて太陽電池特性 も変動する。特にアモルファスシリコン(a-Si)太陽電池 には初期劣化と呼ばれる光照射開始初期での光電変換効率 (以下,変換効率と記す)の低下と熱アニールによる変換 効率の回復があり,その特性を反映して結晶シリコン(Si) 太陽電池とは異なる季節変動挙動を示す。また,実際に太 陽電池を設置する場合,年間の発電量を最大にするために は方位角を0°(南向き),傾斜角は設置地点の緯度よりや や水平にするのが最適であるが,設置する構造体(住宅屋 根など)の制約により最適条件とは異なる設置条件とせざ るを得ない場合も多い。そこで,横須賀市にある(株)富士 電機総合研究所構内に各種太陽電池モジュールを設置し, 特に以下の観点から発電状態を連続的に計測した。

- (1) アモルファス太陽電池と結晶 Si 太陽電池の比較
- (2) アモルファス太陽電池のデバイス構造の違いによる発 電特性比較
- (3) モジュールの設置条件(方位,傾斜)の影響

以下に発電特性計測システムの概要とこれまでに得られ た計測結果について報告する。

2.1 発電量計測システムの概要

計測システムの概要を表1にまとめ,以下にその内容を 補足説明する。

表1 発電量計測システムの概要

項目	概要	
計 測 場 所	横須賀市 緯度:北緯 35 ℃3',経度:東経 139 ℃7'	
計測項目	日射量,発電電力量,気温,モジュール温度,風速	
計測モジュール	4種類(各2モジュール) a-Si/a-Si,a-Si/a-SiGe,結晶 Si,a-Si シングル	
設置方位	東,西,南,北	
設置傾斜角	標準:6/10 こう配(31°), 一部:垂直	
発電量計測	P _{max} 制御回路で動作点を制御 電子負荷で発電電力を消費しながら動作電圧および 動作電流を計測	
計測時間間隔	計測間隔10秒 1分間隔で平均値をとる。	
データ処理	1回/1日データを計測用パソコンからオラクルデータ ペースへ自動転送 最小10分単位で積算値(平均値)を求める。	

井原 卓郎

電力用アモルファスシリコン太陽 電池の研究・開発に従事。現在, (株)富士電機総合研究所材料技術 研究所太陽電池プロジェクト室主 任研究員。電気学会会員。

西原 啓徳

りん酸形燃料電池,溶融炭酸塩形 燃料電池の開発に従事。現在, (株 富士電機総合研究所材料技術 研究所太陽電池プロジェクト室。 主任研究員。

2.1.1 モジュールの種類と配置

計測に用いたモジュールは,富士電機の開発品であるプ ラスチックフィルムを基板とする多接合型アモルファス太 陽電池2種類(a-Si/a-Si, a-Si/a-SiGe)および比較用と して結晶Si太陽電池と単接合a-Si太陽電池(a-Siシング ル)の計4種類とした。この中で現在開発の中心としてい るのは,図1のような断面構造と分光感度特性を持つゲル マニウム(Ge)タンデム(a-Si/a-SiGe)構造である。各 モジュールの定格容量(公称最大出力)の値を表2に示す。 a-Si系モジュールの定格容量は光照射に対する安定化の ための前処理を行った後の値である。

発電特性の評価については,南面の標準こう配(6/10 こう配,31°)で各種モジュールの比較を行い,Geタンデ ムモジュールを用いて設置条件の影響を評価している。設 置場所は研究施設の屋上であり,架台の設置にあたっては 周囲の建物や架台から生じる影を計算し,年間を通してモ ジュール上に影ができないように配慮している。

2.1.2 計測システム

通常の太陽光発電システムでは,インバータが太陽電池 の直流発電電力を交流電力に変換するとともに,内蔵する 最適動作点(最大出力: Pmax)追尾機能により太陽電池の 動作状態を制御している。モジュール単位で発電量計測を 行ううえでは,絶えず変化する動作環境に応じて太陽電池 を Pmax 状態に保ちながら発電電力を連続的に消費するこ とがポイントとなる。そこで,本発電特性試験では Pmax トラッキング回路を通して動作点制御を行いながら電子負 荷に発生電力を消費させ,動作電圧と動作電流をおのおの 計測する方式としている。測定値は直流値であるため単純

図1 タンデム型フィルム基板太陽電池の構造と分光感度

表 2	計測モジュー	・ルの定格容量・	(標準条件での出力)

種類(略称)	デバイス	定格容量(W)
Ge タンデム	a-Si/a-SiGe	23
Siタンデム	a-Si/a-Si	20
結 晶 Si	結晶 Si	52
a-Si シングル	a-Si	28(銘板値)

に両者の積から発電電力を算出する。計測間隔は10秒とし,計測データは1分間の平均値として計測用パソコンに 一時保存した後,1回/1日(午前1時)データベースに自 動転送するシステムとしている。これまでに計測システム のトラブルによるデータ欠損は発生していない。

2.2 各種太陽電池モジュールの発電量比較

2000 年 9 月 14 日に Ge タンデム,結晶 Si, a-Si シング ルの 3 種類について計測を開始し, Si タンデムを後に追 加した (2000 年 12 月)。

図2に各種モジュールの規格化発電量の月変化の様子を 示す。規格化発電量は,発電量/(定格出力×日射強度1 kW/m²に換算した日射時間)で求めた値であり,太陽電 池が常に標準条件でのエネルギー変換効率で動作したと仮 定した場合の発電量と実際の屋外環境での発電量の比率を 表す。図から発電量の月変化の様子をみると,結晶Siで は冬に高く夏に向かって低下し,アモルファス系ではその 逆の傾向を示している。この対照的な季節変動の傾向は一 般的に認められている現象であり,次の二つの理由による。

- (1) 半導体を光電変換材料とする太陽電池は負の出力温度 係数を持ち,アモルファス系でも同一の光照射条件下で 短時間内に温度を変化させる場合には低温の方が変換効 率は高い。しかし,アモルファス系の場合には,光照射 によって生じた欠陥が熱アニールにより回復して半導体 特性が改善されるため実際には結晶とは逆に夏季に変換 効率が向上する。出力の負の温度係数の値もアモルファ ス系で - 0.002 ~ - 0.0025,結晶 Siで - 0.004 ~ - 0.005 程度であり結晶の方が約2倍大きい。
- (2)相対的に夏季の光には短波長光の割合が多く、冬季の 光には長波長光の割合が多い。結晶に比べて光学ギャッ プが大きく短波長光に大きな感度を持つアモルファス系 にとっては相対的に夏季に有利、冬季に不利となる。 図3にはGeタンデム、結晶Si,a-Siシングルの3種類 について定格容量(W)あたりの発電量(Wh)の変化の 様子を示す。ユーザーが太陽光発電システムを導入する場 合、通常、定格(公称)容量に基づいて導入することとな るが、定格容量は標準条件(日射強度:1kW/m², モ

図2 発電特性の月変化

ジュール温度:25 ,太陽光スペクトル:エアマス 1.5) での性能値であるため同一容量でも太陽電池の種類によっ て実際の発電量 Wh は大きく異なる。表3に3種類の太陽 電池について 2001 年 1 月から 2001 年 12 月までの1 年間 の発電特性データを示す。これらの計測結果をまとめると 以下のようになる。

 2.2.1 結晶 Si とアモルファス(Ge タンデム)の比較 定格容量1W あたりの2001年の年間発電実績は, Ge タンデム: 1,540 Wh, 結晶 Si: 1,350 Wh

(数値は直流での実績値であり,交流として利用可能な 発電量はインバータ効率 0.9 程度を掛けた値となる)

であり, Ge タンデムは結晶 Si に比べて約 14 %大きい。 これは,ユーザーにとって Ge タンデムを設置した方が 結晶 Si に比べてその分利得が大きいことを意味する。図 3から分かるように,特に夏季に両者の差が顕著となって いる。図 2 の発電量の推移を比較すると,冬季には両者の 規格化発電量が接近しているが,夏季には 20 %程度まで 拡大している。温度計測値によれば夏季のモジュール温度 は基準条件の温度 25 を大きく超える約 60 に達してお り,負の温度係数が大きい結晶 Si の発電効率が低下する ことが主な原因であると考えられる。

2.2.2 アモルファス系の中でのデバイス構造による違い

図2に示した発電特性の推移から分かるように,現在開発の中心としているGeタンデムはa-Siシングルに比べて光照射初期での特性の低下が小さく,また,発電特性の季節変動幅も小さい。定格容量1Wあたりの年間発電量(表3)もおのおの1,540Whおよび1,384WhでありGeタンデムの方が11%大きい結果となっている。図1のよう

表3 2001年(1~12月)の発電実績

種類(略称)	総発電量 (Wh)	定格容量 1 W あたりの発電量 (Wh/W)	定格容量 1 W あたりの交流発電量 (Wh/W)*
Geタンデム	35,582	1,540	1,386
Siタンデム	30,281	1,495	1,346
結 晶 Si	70,523	1,350	1,215
a-Si シングル	38,739	1,384	1,246

*:交流発電量は太陽電池の発電量実測値にインバータ効率 0.9 を掛けて 求めた値 なタンデム型構造を採る目的は,シングル(単接合)構造 に比べておのおのの光電変換層の厚さを薄くし,内部電界 を強くすることにより光照射時の初期劣化を抑制しながら 吸収光量を増やすことである。発電実績からタンデム型構 造とした効果が現れていると考えられる。

一方,太陽光のスペクトル変動に対しては一般にタンデ ム型の方が不利となる。これは,入射光を各構成セル (トップセルとボトムセル)でほぼ均等に振り分けて吸収 する必要があり,スペクトルの変動に伴ってそのバランス が崩れることによるものであるが,発電実績を見る限りそ の影響は小さい。

Si タンデムについては計測期間が短く,年間発電量の 集計期間の中に初期劣化の期間も含まれるため定量的な比 較は難しいが,発電量の月変化の様子(図2)からは Ge タンデムに近い挙動を示していることが分かる。

2.3 設置条件の影響

2.3.1 方位による発電量の違い

Ge タンデムモジュールを用い,傾斜角を 6/10 こう配 (31°)にそろえて東西南北の各方位での発電量を計測して いる。図4に示すように,南面を1としたときの各面での 発電量の月変化は,太陽軌道から予想されるように 12月 を極小,6月を極大とする変化を示し,12月には東西面で 南面の0.54~0.58,北面では南面の0.14~0.19程度と なった。相対値が極大となる6月では方位による発電量の 差は小さい。2001年の年間トータルでの発電量は,南面 を1として,東面:0.79,西面:0.81,北面:0.59という 結果であった(表4)。各方位でモジュールと同一傾斜面 に設置した全天日射計の計測値も発電量とよく対応してい る。

2.3.2 垂直に設置したモジュールの発電量

壁への設置を想定して垂直面での発電量も計測し,標準 設置傾斜角度(31°)での発電量と比較している。設置方 位は南向きである。図5に示すように,設置傾斜角31° での発電量を1としたときの垂直面での発電量は,太陽高 度に対応して12月に極大値0.96~0.99,7月に極小値

図4 発電量の方位依存性

0.29 となり, 2001 年の年間トータルでの比率は 0.60 で あった(表5)。

2.4 まとめ

現在,富士電機で精力的に開発を進めているプラスチッ クフィルムを基板とする Ge タンデム構造の太陽電池は結 晶 Si に比べて単位容量(W)あたりの年間発電量(Wh) が1割以上大きいという結果が得られた。これは,通常, 定格容量(公称最大出力)に基づいて太陽光発電システム を導入するユーザーにとって,その分電気料金の節約額が 増えることを意味し大きなメリットとなる。発電量に差が 生じる主要因は,定格容量を規定する標準温度25 より 実際の屋外での動作温度が高くなり,負の温度係数が大き い結晶 Si では特に夏季において光電変換効率が大きく低 下するのに対して a-Si では熱アニールにより逆に夏季に 効率が向上するためと考えられる。夏季にはアモルファス Ge タンデムの容量1W あたりの発電量は結晶 Si より 20%も大きくなっている。これは最も電力需要が高くな る夏季のピークカットに適していることを示している。

デバイス構造比較では,現在開発中の Ge タンデムが a-Si シングル構造に比べて年間を通して安定に高い性能 で発電することを確認した。

表4 年間発電量に及ぼす設置方位の影響(2001年1~12月)

設置方位	年間発電量(Wh)	相対値(南=1)
東	27,922	0.785
南	35,582	1
西	28,634	0.805
北	20,830	0.585

図5 傾斜角による発電量の違い

表5 年間発電量に及ぼす設置傾斜角の影響 (2001年1~12月)

設置傾斜角	年間発電量(Wh)	相対値(31 °= 1)
31°(標準)	35,582	1
垂直	21,254	0.597

その他,年間発電量が北面では南面の60%程度,南側 垂直面でも傾斜面(31°)の60%程度であるなど設置条件 を変えた発電実績が得られた。

今後は温度やスペクトルの影響などをより詳細に解析す るとともに(株)富士電機能力開発センターの研修所などに 導入された大型システムと対応を付けて検討していきたい。 また,標準条件と屋外での発電環境が大きく異なり,定格 容量(公称最大出力)は同じでも実際の発電量に大きな差 が生ずることから,より実際の環境に近い条件で統一的に 性能規定を行う必要があると考える。

3 太陽光発電システムのフィールドテスト

開発を進めている SCAF セルを用いた太陽電池モ ジュールの屋外環境下における発電特性を把握することを 目的として,(株)富士電機総合研究所構内にある健康増進 センターの屋根にタイプの異なる2種類のモジュールを施 工し,1999年1月から連続発電試験を開始した。試験開 始後約3年が経過したので、この間の発電実績について報 告する。

3.1 発電システム

表6に健康増進センター設置太陽電池モジュール発電シ ステムの概要を示す。本実棟試験においては, a-Si タン デムセル(a-Si/a-Si)をデバイスとして用いた2種類の モジュールからの出力をそれぞれ個別のインバータに接続 し交流電力に変換の後,計測制御用などの電源として消費 している。

3.2 モジュールの仕様

本実棟試験ではガラスでモジュール表面をカバーしたガ ラス一体型モジュールと,ガラスカバーを用いない瓦一体 型ガラスレスモジュールのタイプの異なる2種類のモ ジュールの発電試験を行っている。

ガラス一体型モジュールの基本的な構造は,従来の結晶 Si 系太陽電池モジュールと同じであり,結晶 Si セルの代 わりに柔軟性のあるプラスチックフィルムを基板とした SCAF セルを用いたものであるが, SCAF セルでは特別な 配線作業を行うことなく一連のセル製造工程の中で自動的 にユニットセルの直列接続ができるために,結晶系セルを 用いる場合と比較して、モジュールの配線作業は格段に簡 単になり量産時のコストダウンが可能である。

表6 健康増進センター PV システムの概要

項目	瓦一体型ガラスレス モジュール	ガラス一体型 モジュール
デ バ イ ス 構 造	Si タンデム	Si タンデム
設置面積(アパーチャ)	44.1 m ²	48.0 m ²
設置傾斜角	12.6 °	19.3 °
モジュール 数	294 モジュール	80 モジュール
設置容量	3.0 kW	3.2 kW

図6 健康増進センターの外観

一方, 瓦一体型ガラスレスモジュールは, 屋根材への適 用を目指して建材メーカーと共同開発中のものであり, 富 士電機で SCAF セルの製作および樹脂と保護フィルムに よる封止を担当し, 建材メーカーで瓦の製作および瓦への 太陽電池モジュールの張り付けを担当した。従来のモ ジュールで採用されている受光面側のガラスカバーやフ レームを削除したことで, 大幅な軽量化を図っているのが 特長である。

ガラスレスモジュールでは,配線が容易であるうえに柔 軟性を生かした適用も可能になるという特長を有している。 また,ガラスやフレームを用いないことで直接材料費のコ ストダウンや軽量化も実現でき,一般住宅市場をはじめ, より大規模な設備への適用など,将来的に大きな市場が形 成できる可能性があると考えている。

3.3 発電特性

本実棟試験設備の写真を図6に示す。画面左側がガラス ー体型モジュールで,右側が瓦一体型ガラスレスモジュー ルである。1999年1月半ばから発電試験を開始し,約3 年が経過している。この間の月別発電特性推移を図7に示 す。各月におけるモジュール間の発電量の差は主として発 電面積と設置角度の違いに起因しているが,両モジュール ともほぼ日射量に比例した発電量を記録し安定に推移して いる。3年間の設備としての容量 kW あたりの年間発電 量は直流出力として約1,360 kWh(交流出力として1,209 kWh)を記録している。この値を②章で述べた試験サイ トと同じ条件に換算すると直流出力として1,535 kWh とな り,試験サイトでの値1,495 kWh とほぼ一致している。ま たこの値は,結晶系太陽電池の値1,350 kWh と比較すると 1割以上大きいことが確認できた。

以上のように3年間の発電試験により,従来タイプの表面をガラスで封止したモジュールはもとより,ガラスカ バーを用いないフレキシブルなモジュールも十分に実用化 が可能であると判断できるデータが蓄積されつつある。

図7 月別発電特性推移

今後この実棟試験については,さらに試験を継続しデー タを蓄積,解析していく予定である。

4 あとがき

プラスチックフィルムを基板としたアモルファス太陽電 池モジュールの屋外発電特性について紹介してきた。

富士電機で開発を進めている Si/Ge のタンデム構造のア モルファス太陽電池は,結晶 Si 太陽電池と比較して単位 容量あたりの年間発電量が1割以上高いことが確認できた。 これは,アモルファス太陽電池が結晶 Si 太陽電池と比較 して高温での発電特性に優れているためであり,設置する ユーザーにとってはメリットが大きいことが分かってきた。

また,モジュール表面にガラスカバーを用いないガラス レスモジュールにおいても従来タイプのガラスカバーを用 いたモジュールと同等の信頼性が得られつつあり,今後そ の柔軟性や軽量性を生かした市場への導入も大いに進むも のと期待している。

さらに,セル製膜速度の高速化やモジュール加工工数の 低減などにもめどがついてきていることなどから,富士電 機の特長を生かした太陽電池の事業化を進める所存である。

最後に,本稿で紹介した成果の一部は,通商産業省工業 技術院(現経済産業省)「ニューサンシャイン計画」のも と,新エネルギー・産業技術総合開発機構からの委託研究 により得られた成果を適用したものであり,関係各位に謝 意を表する。

参考文献

- Yoshida, T. et al. A New Structure A-Si Solar Cell with Plastic Film Substrate. 1st World Conference on Photovoltaic Energy Conversion. USA .p.441-444 (1994).
- (2) 酒井博.フレキシブル型アモルファス太陽光発電システム.OHM.vol.84, no.1, 1997, p.51-56.
- (3) 市川幸美ほか.アモルファスシリコン太陽電池の開発.富 士時報.vol.73, no.4, 2000, p.249-252.

*本誌に記載されている会社名および製品名は、それぞれの会社が所有する 商標または登録商標である場合があります。