

平成19年3月 富士電機機器制御株式会社 システム機器事業部

MICREX-SXシリーズ SPH 高精度温度センサ入力モジュール発売のお知らせ

拝啓 貴社益々ご清栄のこととお慶び申し上げます。

平素より、富士プログラマブルコントローラをご愛顧賜り、厚く御礼申し上げます。

さて、MICREX-SXシリーズ SPHにおいて、高精度の熱電対入力モジュール、および高精度の測温 抵抗体入力モジュールの発売を開始しましたので、ご案内をいたします。

敬具

一 記 一

1. 発売開始機種

品名	形式	仕様概要
	(商品コード)	
熱電対入力	NP1AXH8G-TC	熱電対入力8チャネル、分解能0.05℃
モジュール		チャネル間絶縁
測温抵抗体入力	NP1AXH6G-PT	測温抵抗体入力6チャネル、分解能0.01℃
モジュール		チャネル間絶縁

2. 発売開始時期

2007年3月

3. 熱電対入力モジュール製品概要

3-1 特長

(1)接続センサ

JIS、IEC、ASTM、DIN 規格に対応した下記熱電対が接続可能です。

• JIS 規格: R, K, J, S, B, E, T, N • IEC 規格: R, K, J, S, B, E, T, N

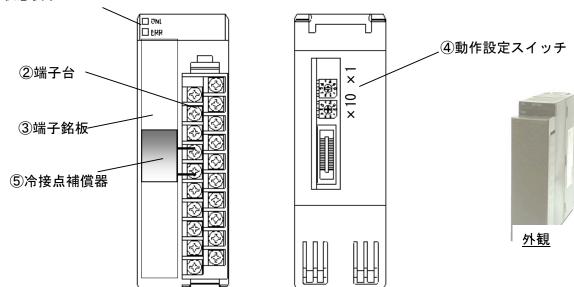
・ASTM 規格:W5Re, W26Re, PL Ⅱ ・DIN 規格:U, L

摂氏・華氏の温度選択が可能です。

(2) 高精度・高分解能

高精度、高分解能ですので、きめ細かい計測が可能です。

(3) 簡単レンジ設定


レンジ設定(全チャネル共通)を背面のロータリスイッチで設定できます。

(4) 各種 FBパッケージとの接続

ディジタル値の範囲を"%"にすることで、PID演算FBなどのPV値として直接接続できるため、警報出力・PID演算・折れ線近似演算・比率演算等が自由に構成できます。

3-2 外観

①状態表示LED

①状態表示LED

<u> </u>		
状態	ONL(緑)	ERR(赤)
初期化・イニシャル時	点滅	消灯
正常動作時	点灯	消灯
重故障時	消灯	点灯

<u>②端子台</u>

____ Ⅰ ╱ O 配線用のM3着脱端子台なので、配線を外さずにモジュール交換ができます。

③端子銘板

端子配線を記載した銘板です。

<u>④動作設定スイッチ</u> 熱電対入力モジュールの動作レンジを、全チャネルー括で設定します。

⑤冷接点補償器

熱電対の冷接点補償を行うセンサですので、取り外さないでください。

<熱電対種類>

着刘悝 頖之					
熱電対	摂氏(℃)		華氏(°	F)	
種類	設定 NO	測定温度範囲	設定 No.	測定温度範囲	
K	0 0	-200 ~ 1370	3 1	−328 ~ 2498	
	0 1	−200 ~ 500	3 2	−328 ~ 932	
	0 2	-100. 0 ~ 1370. 0	3 3	-148. 0 ~ 2498. 0	
	0 3	-100. 0 ~ 500. 0	3 4	−148. 0 ~ 932. 0	
	0 4	−100. 0 ~ 230. 0	3 5	-148. 0∼446. 0	
	0 5	0.00~300.00	_	_	
В	0 6	0~1820	3 6	32~3308	
R	0 7	-50∼1760	3 7	-58∼3200	
S	0 8	-50∼1760	3 8	−58 ~ 3200	
E	0 9	−250 ~ 1000	3 9	-418 ~ 1832	
	1 0	-120. 0 ~ 1000. 0	4 0	−184. 0 ~ 1832. 0	
	11	-120.00∼160.00	_	_	
J	1 2	−200 ~ 500	4 1	−328 ~ 932	
	1 3	−200 ~ 800	4 2	−328 ~ 1472	
	1 4	-200∼1100	4 3	−328 ~ 2012	
	1 5	-100.0∼500.0	4 4	-148. 0 ~ 932. 0	
	1 6	-100. 0 ~ 800. 0	4 5	−148. 0 ~ 1472. 0	
	17	-100. 0 ~ 1100. 0	4 6	-148. 0 ~ 2012. 0	
	1 8	-80. 00 ~ 180. 00	_		
Т	1 9	−260 ~ 400	4 7	-436~752	
	2 0	-150. 0 ~ 200. 0	4 8	−238. 0 ~ 392. 0	
Ν	2 1	-200∼1300	4 9	−328 ~ 2372	
U	2 2	-150 ~ 550	50	-238 ~ 1022	
	2 3	0.0~550.0	5 1	32. 0~1022. 0	
L	2 4	-150~400	5 2	-238∼752	
	2 5	−150 ~ 850	5 3	-238 ~ 1562	
	2 6	0.0~400.0	5 4	32. 0~752. 0	
	2 7	0.0~850.0	5 5	32. 0~1562. 0	
PL2	28	0~1300	5 6	32~2372	
	2 9	0.0~1300.0	5 7	32.0~2372.0	
Wre5-26	3 0	0~2300	58	32~4172	

上表以外の番号の場合、00として動作します。99はリザーブ

<精度と分解能>

精度および分解能は入力レンジで決まるのではなく、下表の測定範囲(起電力フルスケール)で決まるため、入力レンジを狭く設定しても精度および分解能は変わりません。

		C 0 作及 03 G O 77 所能	
入力種類	測定範囲(°C)	基準精度	備考
В	0~1820	±1.8°C (±0.1%)	400~800℃は±3℃、400℃以下は精度保証外
E	-270~1000	± 0.6 °C (± 0.05 %)	-200℃以下は精度保証外
J	-210~1200	$\pm 0.7^{\circ}C (\pm 0.05\%)$	
K	-270~1372	$\pm 0.8^{\circ}C \ (\pm 0.05\%)$	-250~-200℃は±2℃、-250℃以下は精度保証外
N	-270~1300	$\pm 0.8^{\circ}C \ (\pm 0.05\%)$	-200~-150℃は±1.6℃、-200℃以下は精度保証外
R	-50~1768	±1.8°C (±0.1%)	0~100℃は±2.5℃、0℃以下は±3.2℃
S	-50~1768	±1.8°C (±0.1%)	0~100℃は±2.5℃、0℃以下は±3.2℃
Т	-270~420	$\pm 0.35^{\circ}C (\pm 0.05\%)$	-180~0°Cは±0.7°C、-200~-180°Cは±1.3°C
			-200℃以下は精度保証外
L	-200~900	±0.5°C (±0.05%)	
U	-200~600	$\pm 0.4^{\circ}C \ (\pm 0.05\%)$	-100~0℃は±0.5℃、-100℃以下は±0.7℃
Wre5-26	0~2315	±1.2°C (±0.05%)	2200℃以上は±1.4℃
PL II	0~1395	±0.7°C (±0.05%)	

3-3 仕様概要

形式	NP1AXH8G-TC
分解能	1/64000 と 2 μ V の大きい方
基準精度	±0.05 % (Ta=25°C) (*1)
温度係数	±0.01 %/℃(起電力フルスケールに対して)
冷接点補償精度	±1°C (Ta=23°C±5°C)
外部抵抗の影響	約 0. 35 μ V / Ω
変換周期	80ms/8ch
応答時間	80ms/8ch + タクト周期(ms) (*2)
入力フィルタ	ソフト:100. 0sec 以下(プログラムにて可変)
スカフィルス	ハード:約 30ms (時定数)
入力チャネル数	8チャネル
入出カ占有点数	入力8W + 出力4W
絶縁方式	熱電対入力端子 ⇔ FG間 : フォトカプラ絶縁,トランス絶縁
小口小孩刀工	熱電対入力端子 ⇔ チャネル間 : トランス絶縁
— 絶縁耐力	A C 1 O O O V 1 分間 熱電対入力端子一括 ⇔ F G 間 (短絡電流 1 O m A)
小に小外間)フリ	AC1000V 1分間 熱電対入力 ⇔ チャネル間(短絡電流10mA)
	DC500Vの絶縁抵抗計にて10MΩ以上 熱電対入力端子一括 ⇔ FG間
から小外 14/37 に	DC500Vの絶縁抵抗計にて10MΩ以上 熱電対入力 ⇔ チャネル間
内部消費電流	150mA以下
不使用入力の処理	短絡 短絡
使用ケーブル	シールド付き補償銅線を使用のこと
質量	約300g
外部接続	着脱式ねじ締端子台(M3×20極)
外形寸法	W35×H105×D111mm (突起部26mm)

* 1 : 精度は使用センサと測定温度により異なります。 * 2 : ステップ応答時間は、入力フィルタの時間を考慮する必要があります。

4. 測温抵抗体入力モジュール製品概要

4-1 特長

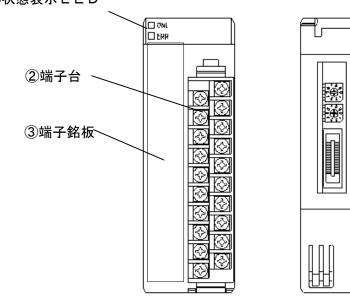
(1)接続センサ

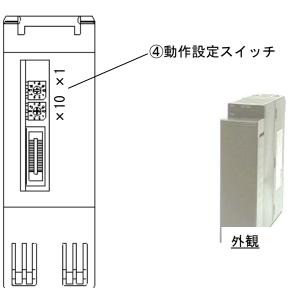
新/旧 JIS 規格、IEC 規格に対応したセンサ(PT, JPt)が接続可能です。 摂氏・華氏の温度選択が可能です。

(2) 高精度 · 高分解能

高精度、高分解能ですので、きめ細かい計測が可能です。

(3)簡単レンジ設定


レンジ設定(全チャネル共通)を背面のロータリスイッチで設定できます。


(4) 各種 FBパッケージとの接続

ディジタル値の範囲を"%"にすることで、PID演算FBなどのPV値として直接接続できるため、警報出力・PID演算・折れ線近似演算・比率演算等が自由に構成できます。

4-2 概観

①状態表示LED

①状態表示LED

大態 大態	ONL(緑)	ERR(赤)
初期化・イニシャル時	点滅	消灯
正常動作時	点灯	消灯
重故障時	消灯	点灯

②端子台

I /O配線用のM 3 着脱端子台なので、配線を外さずにモジュール交換ができます。

③端子銘板

端子配線を記載した銘板です。

④動作設定スイッチ

測温抵抗体入力モジュールの動作レンジを、全チャネルー括で設定します。

<白金測温抵抗体種類>

立测温抵抗体性线	!/			
白金測温	摂氏(℃)			F)
抵抗体種類	設定 NO	測定温度範囲	設定 No.	測定温度範囲
PT	0 0	0~200	3 1	32~392
	0 1	-20∼80	3 2	-4~176
	0 2	0~100	3 3	32~212
	0 3	0~400	3 4	32~752
	0 4	-200 ~ 200	3 5	−328 ~ 392
	0 5	-200∼600	_	-328~1112
	0 6	-200 ~ 850	3 6	-328 ~ 1562
	0 7	0.0~200.0	3 7	32. 0~392. 0
	0.8	-20.0∼80.0	3 8	-4 . 0 ~ 176. 0
	0 9	0.0~100.0	3 9	32. 0~212. 0
	10	0.0~400.0	4 0	32. 0~752. 0
	11	-200. 0 ~200. 0	_	−328. 0 ~ 392. 0
	1 2	-200. 0 ~600. 0	4 1	-328. 0 ~ 1112. 0
	1 3	−200. 0 ~ 850. 0	4 2	-328. 0 ~ 1562. 0
	1 4	−20. 00 ~ 80. 00	4 3	-4 . 00 ∼ 176. 00
JPT	15	0~200	4 4	32~392
	1 6	-20 ~ 80	4 5	-4~176
	17	0~100	4 6	32~212
	18	0~400	_	32~752
	1 9	-200 ~ 200	4 7	−328 ~ 392
	2 0	-200 ~ 500	4 8	-328 ~ 932
	2 1	0.0~200.0	4 9	32.0~392.0
	2 2	-20.0∼80.0	50	-4.0∼176.0
	2 3	0.0~100.0	5 1	32.0~212.0
	2 4	0.0~400.0	5 2	32. 0~752. 0
	2 5	-200. 0 ~200. 0	5 3	-328. 0 ~ 392. 0
	2 6	−200. 0 ~ 500. 0	5 4	-328. 0 ~ 932. 0
<u> </u>	O TO O 10	ヘ へのしして動作し	++ ^	へ <i>は</i> ロヸ゜ヺ

上表以外の番号の場合、00として動作します。99はリザーブ

4-3 仕様概要

- 3 1工悚慨安	
形式	NP1AXH6G-PT
分解能	0. 01°C
基準精度	±0.05 % または ±0.07℃の大きい方 (Ta=23℃±5℃)
温度係数	±0.007 %/°C
入力検出電流	1mA
許容入力配線抵抗値	20Ω以下
(1 線あたり)(*2)	
変換周期	80ms/6ch
応答時間	80ms/6ch + タクト周期(ms) (*1)
入力フィルタ	ソフト:100. 0sec 以下(プログラムにて可変)
スカフィルタ	ハード:約30ms(時定数)
入力チャネル数	6チャネル
入出カ占有点数	入力8W + 出力4W
絶縁方式	PT入力端子 ⇔ FG間 : フォトカプラ絶縁,トランス絶縁
	PT入力端子 ⇔ チャネル間 : トランス絶縁
絶縁耐力	AC1000V 1分間 PT入力端子一括 ⇔ FG間(短絡電流10mA)
	A C 1 O O O V 1分間 P T 入力 ⇔ チャネル間(短絡電流 1 O m A)
絶縁抵抗	DC500Vの絶縁抵抗計にて10MΩ以上 PT入力端子一括 ⇔ FG間
	DC500Vの絶縁抵抗計にて10MΩ以上 PT入力 ⇔ チャネル間
内部消費電流	150mA以下
不使用出力の処理	短絡
使用ケーブル	シールド付きツイスト撚り線を使用のこと
質量	約300g
外部接続	着脱式ねじ締端子台(M3×20極)
外形寸法	W35×H105×D111mm (突起部26mm)
*1・ステップ広答時間	けー入力フィルタの時間を考慮する必要があります

*1:ステップ応答時間は、入力フィルタの時間を考慮する必要があります。 *2:3線間のばらつきはなきこと。

5. プログラミング支援ツールサポートバージョン

• Expert (D300win) V3 (NP4H-SEDBV3) : V3.3.6.0以降
• Standard (NP4H-SWN) : V2.3.0.0以降

5. 販売価格

(単位:円 税抜き)

		\ + 1 · ·	
手配形式	品名	希望小売	納期
		価格	
NP1AXH8G-TC	熱電対入力8チャネル、分解能0.05℃	180, 000	在庫品
NP1AXH6G-PT	測温抵抗体入力6チャネル、分解能0.01℃	160, 000	在庫品

以 上