

富士 IGBT モジュール

Application Manual

Dec., 2020 Rev.f

RH984f

Fuji Electric Co., Ltd.

© Fuji Electric Co., Ltd. All rights reserved.

注意

このマニュアルの内容(製品の仕様、特性、データ、材料、構造など)は2020 年12 月現在のものです。 この内容は製品の仕様変更のため、または他の理由により事前の予告なく変更されることがあります。 このマニュアルに記載されている製品を使用される場合には、その製品の最新版の仕様書を入手して、 データを確認してください。

本資料に記載してある応用例は、富士電機の半導体製品を使用した代表的な応用例を説明するものであり、 本資料によって工業所有権、その他権利の実施に対する保証または実施権の許諾を行うものではありません。

(1) 輸送と保管

段ボール箱の適切な面を上にして運搬してください。そうしないと製品に予期しないストレスがかかり、 端子の曲りや樹脂パッケージ内の歪みなど、影響を及ぼす可能性があります。さらに製品を投げたり落 下させたりすると、製品に大きなダメージを与える可能性があります。また水に濡れると破壊や故障の原 因になりますので、雨や凍結には十分な配慮をお願いします。輸送中の温度や湿度などの環境条件は、 仕様書に記載してありますので厳守してください。

(2) 組み立て環境

パワーモジュールの素子は静電気放電に対して非常に弱いため、組み立て環境におけるESD対策を、 仕様書に記載の範囲内で適切に実施してください。特に、導電性スポンジを制御端子から取り外す時が、 最も製品に電気的ダメージを与える可能性があります。

(3)動作環境

製品を酸や有機物、腐食性ガス(硫化水素、硫酸ガスなど)にさらされる環境で使用した場合、製品性能 や外観を十分確保することができません。

目 次

第1章 構造と特長	
1. 素子構造の変遷	1-2
2. モジュール構造	1-4
3. IGBTモジュールの回路構成	1-5
4. 過電流制限機能	1-6
5. RoHS指令について	1-6
6. 安全規格:UL認証について	1-6

第2章 用語と特性

1. 用語説明	2-2
2. IGBTモジュールの特性	2-4

第3章 適用上の注意事項

1. IGBTモジュールの選定	3-2
2. 静電気対策およびゲート保護	3-3
3. 保護回路の設計	3-3
4. 放熱設計	3-4
5. ゲート駆動回路の設計	3-4
6. 並列接続	3-4
7. 実装上の注意事項	3-5
8. 保管・運搬上の注意事項	3-5
9. 信頼性上からの注意事項(寿命設計)	3-6
10. その他、実使用上の注意事項	3-6

第4章 トラブル発生時の対処方法

1. トラブル発生時の対処方法	4-2
2. 故障判定方法	4-7
	4-8

第5章 保護回路設計方法

1	. 短絡(過電流)保護	5-2
2	2. 過電圧保護	5-8

第6章 放熱設計方法

1. IGBTモジュールの発生損失	6-2
2. 昇圧チョッパ回路の発生損失計算方法	6-3
3. 三相2レベルインバータ回路の発生損失計算方法	6-4
4. 三相ダイオード整流回路の発生損失計算方法	6-8
5. ヒートシンク(冷却体)の選定方法	6-9
6. IGBTモジュールへの取付け方法	6-12

第7章 ゲート駆動回路設計方法

1. ゲート駆動条件と主要特性の関係	7-2
2. ゲート駆動電流について	7-5
3. デッドタイムの設定	7-6
4. ゲート駆動回路設計の具体例	7-8
5. ゲート駆動回路設計、実装上の注意事項	7-9

第8章 IGBTモジュールの並列接続

1. 定常時の電流アンバランス	8-2
2. スイッチング時の電流アンバランス	8-6
3. ゲート駆動回路	8-7
4. 並列接続時の配線例	8-8

第9章 評価·測定方法

1. 適用範囲	9-2
2. 評価・測定方法	9-2

第10章 IGBTモジュールのEMC設計

1. パワーエレクトロニクス機器のEMC概説	10-2
2. インバータにおけるEMI対策設計	10-4
3. IGBTモジュールの適用におけるEMI対策	10-11

第11章 パワーモジュールの信頼性

1. 信頼性の基礎	11-2
2. 信頼性試験	11-4
3. パワーサイクル寿命	11-5

第1章 構造と特長

1. 素子構造の変遷	1-2
2. モジュール構造	1-4
3. IGBTモジュールの回路構成	1-5
4. 過電流制限機能	1-6
5. RoHS指令について	1-6
6. 安全規格:UL認証について	1-6

モータ可変速駆動装置や電算機の無停電電源装置などに用いられるIGBT(JEDEC登録名称、インシュレー テッド・ゲート・バイポーラ・トランジスタ)モジュールは近年の省エネ・装置の小型・軽量化に対する要求の 高まりとともに急速な発展を遂げています。IGBTはパワーMOSFETの高速スイッチング性能とバイポーラ トランジスタの高電圧・大電流処理能力を合わせ持った素子として、今後一層の発展が期待されています。

1. 素子構造の変遷

ゲートに正の電圧を印加するとn型チャネルを形成する(nチャネル型)IGBTはパワーMOSFETのドレイン側 にp⁺層を追加した構造となっており、ベース層の伝導度変調により大電流での低抵抗化が可能な素子です。 IGBTの構造は表面のゲート構造、ベース層を形成するバルク構造に大別することができます。表面のゲート 構造はウェーハ表面,すなわちチップ表面にゲートを形成するプレーナゲート構造とウェーハ中に溝を掘って ゲートを形成するトレンチゲート構造の2種類があります。一方、バルク構造はオフ時に空乏層がコレクタ側に 接触するパンチスルー(Punch Through)型,接触しないノンパンチスルー(Non Punch Through)型に大きく 分けることができます。図1-1 に nチャネル型IGBTの構造比較を示します。

富士電機はIGBTの製品化を1988年から始め、市場に供給してきました。当時のIGBTはプレーナゲート型 パンチスルーIGBTが主流でした。当時のパンチスルー型IGBTはエピキャシタルウェーハを用いたIGBTで、 コレクタ側からキャリアを高注入することで低オン電圧を実現していました。同時にターンオフ時はnベース層 (nドリフト層)に高注入されたキャリアを速やかに消去する必要があるため、ライフタイムコントロール技術を 適用しています。これにより低オン電圧と低いターンオフスイッチング損失(*E*off)を実現させていました。しかし ライフタイムコントロール技術を適用した場合、高注入のキャリアをライフタイムコントロール技術で抑制する ため、特性改善に限界がありました。その上ライフタイムコントロール技術を適用した場合、オン電圧特性の バラツキが生じるため、近年要求の高まってきた並列使用による大容量化に対するデメリットが有りました。

これらの課題を打開するためにノンパンチスルー型IGBTが開発されました。ノンパンチスルー型IGBTは、 コレクタ(p⁺層)の不純物濃度コントロールによりキャリアの注入効率を抑制するとともに、nベース層(nドリフト 層)の厚さを薄くして輸送効率を高くしています。ノンパンチスルー型IGBTではエピタキシャルウェーハを用い ず、FZ(Floating Zone)ウェーハを用いることができるため、結晶欠陥の影響を受けにくい利点を持っています。 一方、低オン電圧を達成するためには高輸送効率化する必要がありnベース層の厚さ、すなわちチップ厚を 薄くする技術が必要でした。富士電機ではウェーハの薄厚化技術を開発し特性改善に貢献してきました。

更なる特性改善のためには、より薄いチップ厚を持ったIGBTが必要となりますが、チップ厚の大部分を nベース層の厚さが占めるため、厚さを薄くすると所定電圧の保持が不可能になります。この特性改善を 阻む要因を打破した構造がFS(Field Stop)構造です。FS構造とはnベース層(nドリフト層)に濃度が高いFS 層を設けた構造です。この構造を採用することで更なる特性改善が可能となりました。

また富士電機はIGBTの特性改善に不可欠な技術として表面構造の微細化も併せて進めて来ました。IGBT はセルと呼ばれるIGBTの基本構造を多数配置した構造によって形成しています。IGBTセル数が多いほど 低オン電圧化が実現できます。セル高密度化のためウェーハ表面に平面的にIGBTセルを作るプレーナ構造 からシリコン表面にトレンチ(溝)を形成し3次元的にゲートを形成するトレンチ構造へと表面構造も移り 変わってきました。バルク構造,表面構造に様々な技術を適用することで、特性改善を図ってきました。

図1-1 IGBTの構造比較

1-3

2. モジュール構造

図1-2,1-3に代表的なIGBTモジュールの構造を 示します。図1-2に示す端子台一体構造モジュール は、ケースと外部電極端子を一体に成型した構造 の採用により、部品点数の削減及び内部配線 インダクタンスの低減を図り、またDCB(Direct Copper Bonding)基板の採用により低熱抵抗およ び高抗折強度を有す 高信頼性製品を実現しました。

図1-3に示すワイヤー端子接続構造モジュールは、 外部端子とDCB基板の接合にアルミワイヤーで 接合する構造を取っています。これにより、

パッケージ構造の簡易化・小型化・薄厚化・軽量化 ・組立工数の削減を実現しました。

さらに、IGBTやFWDチップを適切に配置することに より効果的な熱分散を可能にする工夫や、上下 アームIGBT素子を均等に配置することでターンオン 時の過渡電流バランスを均等化し、ターンオン損失 の増加が起こらない工夫なども行っています。

図1-2 端子台一体構造IGBTモジュール

図1-3 ワイヤ端子接続構造IGBTモジュール

3. IGBTモジュールの回路構成

表1-1にIGBTモジュールの回路構成例を示します。

表1-1 IGBTモジュールの回路構成例

夕升	IGBTモジュ	h± 446	
名仦	外観	等価回路	行似
1in1	a a a a a a a a a a a a a a a a a a a	C O C C C C C C C C C C C C C C C C C C	パッケージの中にIGBTとFWDを 各1個内蔵した製品。電流定格の 大きな領域の製品で、並列接続 することで更に大容量の装置に 適用することも多い。
chopper	C. C. C.	FWD Inverse Diode C1 0 C1 C1 C C1 C C1 C C1 C C1 C C1 C C	パッケージの中にIGBTとFWDを 各1個直列接続し内蔵した製品。 PWMインバータのブレーキ用途、 2in1等と組み合わせてIタイプ3レ ベル回路を構成できる。
2in1	CARAGE STATES	$\begin{array}{c} c_1 \\ c_1 \\ c_1 \\ c_2 \\$	パッケージの中にIGBTとFWDを 各2個内蔵した製品。3台一組で PWMインバータを構成するのが 一般的。又電流定格の大きい モジュールを並列接続して 使用することも多い。
4in1	C. C		パッケージの中にIGBTとFWDを T型またはI型に配置し構成した 製品。太陽光インバータ等に 使うのが一般的。又モジュール を並列接続して使用することも 多い。
6in1	Property of the second		パッケージの中にIGBTとFWDを 各6個内蔵した製品。温度検出用 にNTCサーミスタを内蔵したタイプ も系列化。本モジュール1台で PWMインバータを構成するのが 一般的。
PIM	Alexadorddorddornodda	000 000 000 0 0 0 000 000 000 0 0 0 0	PIMとはパッケージの中にコン バータ,インバータ,ブレーキの3 機能を内蔵した製品。温度検出 用にNTCサーミスタを内蔵したタイ プも系列化。

表1-1に示したようにIGBTモジュールには基本的に1in1, 2in1, 6in1, PIM(7in1)の4種類が存在し、それぞれのタイプに特徴があります。本表には回路構成も記載していますので、素子選定の際の参考としてください。

4. 過電流制限機能

IGBTの実使用上、装置の短絡事故等によりIGBTに過電流が流れる場合があり、過電流が流れ続けると 素子自身が急激に温度上昇し永久破壊に至る場合があります。通常、この過電流の流れ始めから破壊に 至るまでの時間を「短絡耐量」として表現します。そして短絡耐量は電源電圧が低い程、過電流が小さい程、 その短絡耐量は高く(長く)なります。すなわち短絡時のエネルギーが小さいほど短絡耐量は高くなります。 IGBTではゲートーエミッタ間に印加するゲート電圧にも依存しますが、印加短絡事故時等の過電流を 定格電流の数倍にIGBT自身が制限するように設計しており、過電流検出後に十分保護がかけられる 高い短絡耐量を実現しています。

5. RoHS指令について

RoHS(Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) 指令とはEU(欧州連合)が2006年7月1日に施行した有害物質規制のことであり、電気電子機器への特定 有害物質の含有を禁止することを示します。

規制対象となっているのはPb(鉛), Cd(カドミウム), Cr6+(6価クロム), Hg(水銀), PBB(ポリブロモビフェニル), PBDE(ポリブロモジフェニルエーテル), DEHP((フタル酸ビス(2-エチルヘキシル), BBP(フタル酸ブチルベンジル), DBP(フタル酸ジブチル), DIBP(フタル酸ジイソブチル)の10物質であり、これら10物質をしきい値(Cdは0.01%、他は0.1%)を超えて含有する製品はEU内では販売できません。IGBTモジュールのRoHS対応に対し特に関連性が深いものが各チップ,DCBを接続するための半田中に含まれる鉛(Pb)です。富士電機ではPbフリー半田を用いてRoHS規制に対応した製品化を実施しています。

6. 安全規格:UL認証について

北米を代表としたULの安全性に関する規制に適合していることを要求する地域では、様々な機器を市場で 使用する場合、その機器に使用する部品に対してULの認証が必要となります。

富士電機IGBTモジュールはUL1557に準拠し、認証を取得しています。認証機種についてはULのウェブ サイトより確認いただけます。

上記ウェブサイトに富士電機半導体モジュール製品のUL File Number "e82988"を入力して検索していた だきますと、富士電機が現在UL認証を受けている製品型式の一覧が表示されます。

第2章 用語と特性

1. 用語説明	2-2
2. IGBTモジュールの特性	2-4

本章では、IGBTモジュールに関する用語および特性について説明します。

1. 用語説明

以下に、仕様書等に使用している様々な用語について説明します。

表2-1 最大定格(Maximum Ratings)

用語	記号	定義 及び 説明 (条件は各製品の仕様書を参照ください。)
コレクターエミッタ間電圧 (Collector-Emitter voltage)	V _{CES}	ゲートーエミッタ間を短絡した状態でコレクターエミッタ間に印加できる最大電圧
ゲートーエミッタ間電圧 (Gate-Emitter voltage)	∨ _{GES}	コレクターエミッタ間を短絡した状態でゲートーエミッタ間に印加できる最大電圧
	IC	IGBTに流すことができる最大直流電流
コレクタ電流	ı _c pulse	IGBTに流すことができる最大パルス電流
(Collector current)	-I ^c	FWDに流すことができる最大直流順電流
	—ı _c pulse	FWDに流すことができる最大パルス順電流
最大損失 (Collector power dissipation)	Pc	1アーム当りのIGBTで許容する最大電力損失
接合部温度 (Vertual junction temperature)	T _{vj}	素子が異常を引き起こさず動作できる接合部の最大温度 (装置の最悪条件下にて、この値を超えない設計が必要)
連続動作時接合部温度 (Operating vertual junction temperature)	Τ _{νj(op)}	素子を連続的に動作させることが可能な接合部の温度
ケース温度 (Case temperature)	т _с	モジュールのケース温度 (IGBTあるいはFWD直下の銅ベース下面温度を示す。詳細は第6章を参照)
保存温度 (Storage temperature)	⊤ _{stg}	モジュールに電気的負荷をかけずに保存、または輸送できる温度範囲
電流二乗時間積 (FWD-12T)	I²t	ダイオードが許容する過電流のジュール積分値。 商用正弦半波(50,60Hz), 1サイクルで規定する
尖頭サージ順電流 (FWD-IFSM)	I _{FSM}	ダイオードが許容する1サイクルの商用正弦半波(50,60Hz)電流ピーク値
絶縁耐圧 (Isolation voltage)	V _{iso}	モジュールの電極全てを短絡した状態で、電極と冷却体取付面間で許容する 正弦波電圧実効値の最大値
締付けトルク	Mounting	所定のネジで素子と冷却体(ヒートシンク)を締付ける際の最大許容トルク値
(Screw torque)	Terminal	所定のネジで端子と外部電極を締付ける際の最大許容トルク値

注1:特に規定のない限り⊤₀=25℃の値を記載しています。

注:最大定格として記載されている値は、いかなる場合もこれを超えてはなりません。

<u>表2-2.</u> 電気的特性(Electrical Characteristics)

用語		記号	定義 及び 説明 (条件は各製品の仕様書を参照ください。)	
44	コレクターエミッタ間遮断電流 (Zero gate voltage Collector current)	ICES	ゲート(以下G)ーエミッタ(以下E)間を短絡した状態で、 コレクタ(以下C)ーE間に指定電圧を印加したときのC-E間の漏れ電流	
	ゲートーエミッタ間漏れ電流 (Gate-Emitter leakage current)	I _{GES}	CーE間を短絡した状態で、GーE間に指定電圧を印加したときの G-E間の漏れ電流	
	ゲートーエミッタ間しきい値 電圧 (Gate-Emitter threshold voltage)	∨ GE(th)	指定C-E間電流(以下コレクタ電流)とC-E間電圧(以下v _{CE})における GーE間電圧(以下v _{CE})	
	コレクターエミッタ間飽和電圧 (Collector-Emitter saturation voltage)	∨ CE(sat)	指定のVGEにおいて定格コレクタ電流を流した時のVCE値	
静	入力容量 (Input capacitance)	C _{ies}	C-E間を交流的に短絡した状態で、G-E間およびC-E間に指定電圧を 印加した時のG-E間容量	
	出力容量 (Output capacitance)	C _{oes}	G−E間を交流的に短絡した状態で、G−E間およびC−E間に指定電圧を 印加した時のC−E間容量	
	帰還容量 (Reverse transfer capacitance)	C res	E接地で、C-E間およびG-E間に指定電圧を印加した時のC-G間容量	
	ダイオード順電圧 (Forward on voltage)	V F	FWDに指定の順方向電流(通常定格電流)を流したときの順方向電圧値	
覧くだささい)	ターンオン時間 (Turn-on time)	ton	IGBTのターンオン時 v œが0Vに上昇後、v œが最大値の10%に 下降するまでの時間	
	立上り時間 (Rise time)	tr	IGBTのターンオン時コレクタ電流が設定値の10%に上昇した時点から、 ∨ c∉が設定値の10%に下降するまでの時間	
		t _{r(i)}	IGBTのターンオン時コレクタ電流が設定値の10%に上昇した時点から、 90%に到達するまでの時間	
動特性 2-5を参!	ターンオフ時間 (Turn-off time)	t _{off}	IGBTのターンオフ時∨œが設定値の90%に下降した時点から、 コレクタ電流が下降する電流の接線上で設定値の10%に下降するまでの時間	
絶は図2	立下り時間 (Fall time)	tf	IGBTのターンオフ時コレクタ電流が設定値の90%から、 下降する電流の接線上で設定値の10%に下降するまでの時間	
趉	逆回復時間 (Reverse recovery time)	t _{rr}	FWDの逆回復電流が消滅するまでに要する時間	
	逆回復電流 (Reverse recovery current)	I rr (I rp)	FWDの順方向電流遮断時に逆方向に流れる電流のピーク値	
逆バイアス安全動作領域 (Reverse Bias Safe Operation Area)		RBSOA	ターンオフ時に指定の条件にてIGBTを安全に遮断できる コレクタ電流とv c∈の領域	
ゲート抵抗 (Gate resistance)		rg	モジュールに内蔵するゲート直列抵抗値	
ゲート電荷量 (Gate charge capacity)		QG	IGBTをターンオンさせるためにG-E間に充電する電荷量	

表2-3. 熱的特性(Thermal Characteristics)

用語	記号	定義 及び 説明 (条件は各製品の仕様書を参照ください。)	
熱抵抗	R th(j-c)	IGBTあるいはFWDのチップ・ケース間熱抵抗	
(Thermal resistance)	R th(c-s)	IGBTモジュールをサーマルグリースを用いて推奨トルク値にてヒートシンクに 取付けた状態でのケースー冷却体間熱抵抗	

<u>表2-3. サーミスタ特性(Thermistor Characteristics)</u>

用語	記号	定義 及び 説明 (条件は各製品の仕様書を参照ください。)
サーミスタ抵抗 (Resistance)	Resistance	指定温度でのサーミスタ端子間電気抵抗値
B値 (B value)	В	抵抗-温度特性において、任意の2温度間での抵抗変化の 大きさを表す定数

2. IGBTモジュールの特性

6MBI100VB-120-50(1200V/100A,第6世代IGBTモジュール)を例に取り、仕様書等に記載しているIGBTの 種々の特性についての説明を以下に示します。

2.1 静特性

VシリーズIGBT:6MBI100VB-120を例に $V_{CE} - L$ 特性(一般的に出力特性と呼ばれる)の V_{GE} 依存性を図 2-1,図2-2に示します。この特性はIGBTがオンしている時のドロップ電圧(V_{CE})と電流(L)の関係を示すもので、オン時にIGBTに発生する損失となります。従って V_{CE} が低い程、発生損失が小さくなりますが、この特性は温度(T_{VI})、 V_{GE} によって変化しますので、これらの特性をよく考慮した上で装置設計を行なうようお願いします。

一般的には V_{GE} =15Vにおいて、装置の最大出力 電流 \leq 素子の I_{C} 定格電流値以下で使用することを 推奨いたします。

尚、図2-3は図2-1のデータを*V_{CE}-V_{GE}*特性の*L*依存性に置き換えたグラフで、*V_{CE}が急激に増える限界のV_{GE}の目安を読み取ることが出来ます。*

図2-1 $V_{CE(sat)} - I_C$ 特性($T_{vj}=25^{\circ}C$)

2.2 スイッチング特性

IGBTは一般的にスイッチング用途に使用 するため、ターンオン、ターンオフする時の スイッチング特性を十分に理解しておくこと が重要です。またこの特性は種々のパラ メータによって変化するため、これらも 考慮に入れて装置の設計を行なう事が 必要です。

このスイッチング特性は、スイッチング 時間とスイッチング損失の二つに大別 することができます。これらのスイッチング 特性は図2-4に示すチョッパ回路で測定 する事が出来ます。

表2-2(動特性項目)に記載したスイッチング 時間*t*_{on}, *t*_r, *t*_r(i), *t*_{off}, *t*_f, *t*_{rr}, *I*_{rr} 7項目の定義を 図2-5の概略波形で示します。

図2-4 スイッチング特性測定回路

図2-5 スイッチング時間の定義

これらのスイッチング時間とコレクタ電流の関係を図2-6,7,16に、スイッチング時間とゲート抵抗の関係を 図2-8に示します。この様にスイッチング時間はコレクタ電流、温度(*T_{vj}*),ゲート抵抗*R*_Gによって変化しますので 装置設計の際、充分な考慮をお願いします。例えばスイッチング時間(特に*t_{off}*)が長くなる条件(*R*_Gが大きい等) で使用しますと、デッドタイム不足による直列アーム短絡(片方のIGBTがオフする前にもう片方のIGBTがオン して過大な電流が流れる現象、詳しくは第4章を参照ください)等の不具合を起こし素子が破壊する可能性

があります。一方 t_i が短すぎる条件(R_c が小さすぎる等が原因)で使用しますと過渡的な電流変化(dI_c/dt)が 大きくなりますので、これにより回路のインダクタンス(Ls)によるスパイク電圧(=Ls × dIc/dt)が発生します。 このスパイク電圧が印加電圧に上乗せされるため、RBSOA(本章2.4を参照ください)を超えて素子が 破壊する場合もあります。したがって装置設計時、コレクタ電流,温度(T_{v_i}),ゲート抵抗 R_c などを充分に考慮し、 上記不具合が発生しないように設計してください。

図2-6 スイッチングタイム-*I*₀特性(*T*_{vi}=125℃)

図2-7 スイッチングタイムーIc特性(Tvi=150°C)

図2-9 スイッチング損失-6特性

ー方スイッチング損失(Eon, Eoff, Err)は、IGBTが スイッチングする際(ターンオン,オフ時)に発生し ます。この特性は図2-9,10に示す様に温度(T_{vi}), f_c, R_cで変化します。特にR_cの選定は重要で、大きす ぎるとスイッチング損失が大きくなる上、前述の デッドタイム不足による直列アーム短絡を起こし やすくなります。逆にスイッチング損失を下げる ためにR_gを小さくする場合は、前述の急激な スパイク電圧(=Ls×d_{ic}/dt)が発生するという問題 を起こす可能性があります。ここから分かるように、 R_G選定においては主回路インダクタンス(Ls)の値 が非常に重要です。この値が低ければ低い程、RG 選定の検討が容易(R_gが小さくてもスパイク電圧 が出にくい)になりますので、このLsの値を出来る だけ小さく設計する事を推奨します。尚、R。の決定 にはIGBT駆動回路の容量とのマッチングも考慮 する必要がありますので、本章2.3の容量特性を 使用して十分に検討を行った上でR_Gの選定を お願いします。

2.3 容量特性

図2-11にゲートチャージ(Q_G)の特性を示します。 この特性は、ゲートチャージ容量(Q₀)に対するC-E 間電圧 $(V_{CE}), G-E$ 間電圧 (V_{GE}) の変化を示して います。「Q_Gが増加する」ことは「IGBTのG-E間 の容量に電荷を充電する」ことを表すため、Qoが 増加するとVGE(= QG / G-E間容量)が上昇しIGBT がオンします。IGBTがオンするとV_{CF}がオン電圧ま で下降します。このようにゲートチャージ容量Q。は IGBTを駆動するために必要な電荷量を示して います。この特性は駆動回路の電源容量を決定 する際にご利用ください。図2-12にIGBTの各接合 容量の特性を示します。これらは図2-13に示す様 にCiesはG-E間の入力容量, CoesはC-E間の 出力容量, CrasはC-G間の帰還容量です。これら の特性はQ_gと共に駆動回路設計の際にご使用 ください。

図2-12 接合容量-V_{CE}特性

図2-13 接合容量

2.4 逆バイアス安全動作領域RBSOA

IGBTをターンオフさせる際、安全に遮断できる V_{CE}-I_Cの動作範囲を逆バイアス安全動作領域 RBSOA(Reverse Bias Safe Operating Area)と 言い1200V/100A/IGBTモジュールの場合、 図2-14に示す範囲となります。

ターンオフ時 $V_{CE} - I_C$ の動作軌跡がこのRBSOAの 領域に納まるようにスナバ回路設計をする必要が あります。

なお、短絡電流遮断時の安全動作領域SCSOA (Short Circuit Safe Operating Area)については、 シリーズごとに異なりますので、そのシリーズの テクニカルデータを参照願います。

図2-14 逆バイアス安全動作領域(RBSOA)

2 - 8

2.5 内蔵ダイオード(FWD)の特性

IGBTモジュールでは、高速ダイオード(以下、FWD:Free Wheeling Diode)をIGBTと逆並列に接続し、 モジュールに内蔵しています。このFWDは図2-15に示す $V_F - f_F$ 特性と図2-16に示す逆回復特性(t_{rr} , f_{rr})、 および図2-9,10に示す逆回復動作時のスイッチング損失(E_{rr})特性を有しています。これらの特性はIGBTと 同様FWDに発生する損失計算に使用します。またFWDの特性はコレクタ電流,温度(T_{vj}), R_G などにより変化 するので注意が必要です。

図2-15 V_F-- I_F特性

図2-16 t_{rr}, I_{rr} - I_r特性

2.6 過渡熱抵抗特性

温度上昇の計算及びヒートシンクの設計に 用いる過渡熱抵抗特性を図2-17に示します(この 特性はIGBT,FWD共に1アーム当りの特性です)。 この熱抵抗とは熱解析等でよく使われる特性で 電気抵抗のオームの法則に酷似した公式: 「温度差 Δ T(°C]= 熱抵抗 R_{th} [°C/W]× エネルギーE[損失)[W]」で定義されます。 IGBTモジュールでは熱抵抗はIGBT,FWDの T_{vi} を計算する際に使用します。 (詳細は第6章「放熱設計方法」をご参照ください)

図2-17 過渡熱抵抗特性

第3章 適用上の注意事項

1.	IGBTモジュールの選定	3-2
2.	静電気対策およびゲート保護	3-3
3.	保護回路の設計	3-3
4.	放熱設計	3-4
5.	ゲート駆動回路の設計	3-4
6.	並列接続	3-4
7.	実装上の注意事項	3-5
8.	保管・運搬上の注意事項	3-5
9.	信頼性上からの注意事項(寿命設計)	3-6
10.	その他、実使用上の注意事項	3-6

本章ではIGBTモジュールの取り扱い時、および装置への適用時の注意点を説明します。

1. IGBTモジュールの選定

IGBTモジュールを使用する場合、どのような電圧・電流定格のIGBTモジュールを選定すれば良いか考慮 する必要があります。この節では様々な注意点を項目毎に分け説明しています。

1.1 電圧定格

IGBTモジュールの電圧定格は、適用する装置の入力電源である商用電源電圧と密接な関係を持って います。この関係を表3-1に示しますので、この表を参考にして目的に応じた素子の選定をお願いします。

	地域		IGBTモジュールの電圧定格			
			600V	1200V	1700∨	
	アジア	日本	200V	400V, 440V		
商 用		韓国	200V, 220V	380V		
電 源		中国	220V	380V		
電 圧	北 米	アメリカ合衆国	120V, 208V, 240V	460V, 480V	600)/	
(入力電圧AC)		カナダ	120V, 208V, 240V	575V	6900 (産業用高圧電源、風力発電	
	欧 州	イギリス	230V	400V	ज े)	
		フランス	230V	400V		
		ドイツ	230V	400V		
		ロシア	220V	380V		

表3-1 商用電源電圧とIGBTモジュールの電圧定格適用例

1.2 電流定格

IGBTモジュールのコレクタ電流が大きくなるとV_{CE(sat)}が上昇し、発生する定常損失が大きくなります。 また、同時にスイッチング損失も増大し素子の発熱が大きくなります。IGBTモジュールはIGBT,FWDの 接合部温度(*T_{vj}*)が最大接合温度*T_{vj}(max)*以下となるように使用する必要があります。この設計を誤ると 素子破壊、或いは長期信頼性の低下を招くことがありますのでご注意ください。この様な観点から、IGBT モジュールの電流定格選定は非常に重要です。また、高周波スイッチング用途ではスイッチング損失の 増大(スイッチング回数が多い程、合計のスイッチング損失が大きくなります)により発熱が大きくなるので 注意が必要です。IGBTモジュール電流定格の基本的な選定基準はインバータ回路の交流出力 電流実効値の√2倍より大きくなるように選定するのが一般的です。しかし電流定格の選定に 関しては、装置の運転条件や放熱条件にも依存しますので、その装置での発生損失と温度上昇を 確認した上で、電流定格の選定をお願いいたします。

3-2

2. 静電気対策およびゲート保護

IGBTモジュールのV_{GE}の保証値は一般的に最大 ±20Vです(保証値は仕様書に記載していますので 確認ください)。V_{GES}保証値を超える電圧をIGBTの G-E間に印加した場合、IGBTのゲートが破壊する 危険があります。したがってG-E間には保証値を 超える電圧を印加しないようにしてください。特に IGBTのゲートは静電気に対して非常に弱く、 以下に示す注意点を守って製品を取り扱うよう お願いします。

 開梱後、モジュールを取り扱う際には、人体や 衣服に帯電した静電気を高抵抗(1MΩ程度) アースで放電させた上で、接地された導電性 マット上で作業をして下さい。

図3-1 G-E間オープン状態でのIGBTの振る舞い

- 2) IGBTモジュールの端子は静電気対策を施しておりませんので、開梱後、端子(特に制御端子)部には 直接触れず、パッケージ本体を持って取り扱ってください。
- 3) 端子への半田付作業を行う場合、半田ゴテ,半田バスのリークによる静電気がIGBTに加わらないように、 半田ゴテ先等を十分低い抵抗で接地して下さい。

また、G-E間がオープン状態でC-E間に電圧を印加すると、IGBTが破壊する可能性があります。これは コレクタ電位の変化により、図3-1に示す電流(i)がコレクタからゲートに流れ、ゲート電位が上昇することで IGBTがオンしコレクタ電流が流れる事が原因です。このコレクタ電流によってIGBTが発熱し破壊に至る 可能性がありますので、IGBTモジュールを装置に組み込み後に、ゲート回路の故障、或いはゲート回路が正 常に動作しない状態(ゲートがオープン状態)で主回路電圧を印加すると上記の理由によりIGBTは破壊する ことがあります。破壊防止の為ゲートーエミッタ間に10kΩ程度の抵抗(*R*_{GE})を接続することを推奨いたします。

3. 保護回路の設計

IGBTモジュールは過電流・過電圧といった異常現象により破壊する可能性があります。したがって、その 異常現象から素子を保護するための保護回路設計はIGBTモジュールを適用する上で非常に重要です。 IGBTモジュールを保護する回路は素子特性を十分に理解した上で、素子特性にマッチングするように設計 することが重要です。マッチングが取れていないと保護回路が付いていても素子が破壊することがあります。 その一例として、過電流保護をかける時の遮断時間が長いこと、スナバ回路のコンデンサ容量が小さく過大 なスパイク電圧が発生することなどが挙げられます。これら過電流・過電圧保護方法は、第5章「保護回路 設計方法」に詳しく説明していますので、そちらを参照願います。

4. 放熱設計

IGBTモジュールには、許容できる最大接合部温度 T_y(max)を決めており、この温度以下になるような放熱 設計が必要です。放熱設計を行なう際、IGBTモジュールを適用するアプリケーションの動作を充分に考慮 した上で設計をお願いいたします。

放熱設計を行なうためには、まず素子の発生損失を算出し、その損失をもとに許容温度以下となるヒート シンクの選定を行ないます。放熱設計が十分でない場合、実機運転中等に素子の許容温度を越え破壊する 問題が発生する可能性があります。注意点などを含め詳しい説明を第6章「放熱設計方法」に記載して いますのでそちらを参照願います。

5. ゲート駆動回路の設計

素子の性能を十分に引き出せるかどうかはゲート駆動回路の設計で決まるといっても過言ではありません。 また、保護回路の設計とも密接にかかわりあっています。

ゲート駆動回路はIGBTをターンオンさせるための順バイアス回路と、IGBTのオフ状態を安定に保つため およびターンオフを速くさせるための逆バイアス回路からなり、それぞれの条件設定により素子の特性が 変わってきます。またゲート駆動回路の配線方法によっては素子が誤動作するといった問題もでてきます。 したがって最適なゲート駆動回路を設計する事は非常に重要です。注意点などを含め詳しい説明を第7章 「ゲート駆動回路設計方法」に記載していますのでそちらを参照願います。

6. 並列接続

大容量インバータ等大電流を制御するような用途にIGBTモジュールを適用する場合、素子を並列に接続 して使用する場合があります。

並列接続して使用する場合、並列接続した素子に均等な電流が流れるよう設計することが重要です。 もし電流バランスが崩れた場合、一つの素子に電流が集中し破壊する可能性があります。

並列接続時の電流バランスは、素子特性や配線方法等で変わってくるため、例えば素子のV_{CE(sat})を 合わせる、主回路配線を均等にするといった管理、設計が必要になります。注意点などを含め詳しい説明を 第8章「IGBTモジュールの並列接続」に記載していますのでそちらを参照願います。

7. 実装上の注意事項

IGBTモジュールを実装する場合、特に次の事に注意して下さい。

- 1) ヒートシンクへの取付けは、モジュール裏面にサーマルグリースを塗布し、規定の締付けトルクにて 十分に締付けてください。また、ヒートシンクはネジ取付け位置間で平坦度を100mmで50μm以下、 表面の粗さは10μm以下としてください。反りの大きいヒートシックにIGBTモジュールを取付ける等の 誤った取り扱いをすると絶縁破壊を起こし、重大事故に発展する場合があります。注意点などを含め 詳しい説明を第6章「放熱設計方法」に記載していますのでそちらを参照願います。
- モジュール電極端子部に過大な応力が加わるような配線は行なわないでください。最悪の場合、
 モジュール内部の半田付けされた電気配線などが断線するなどの不具合を起こします。 注意点などを
 含め詳しい説明を第4章[トラブル発生時の対処方法」に記載していますのでそちらを参照願います。

8. 保管・運搬上の注意事項

8.1 保管

- 1) 半導体デバイスの保管場所の温度は5~35℃、湿度は45~75%が望ましいです。特にモールドタイプの パワートランジスタの場合、乾燥する地域では加湿器による加湿の必要があります。なお加湿の際、水道水 を使うと、水道水中の塩素により端子が錆びるので、水は純水や沸騰水を用いるようにして下さい。
- 2) 腐食性ガスを発生する場所や塵埃の多いところは避けて下さい。
- 急激な温度変化のある場所では半導体デバイス表面に結露が起こることがあります。このような環境を 避け、温度変化の少ない場所に保管して下さい。
- 4) 保管時は半導体デバイスに外力または荷重がかからないようにして下さい。特に積み重ねた状態では 思わぬ荷重がかかることがあります。また、重量物を半導体デバイスの上に載せないで下さい。
- 5) 半導体デバイスの外部端子は未加工の状態で保管して下さい。端子加工後に保管すると、錆などの 発生によって製品実装時に半田付不良となることがあります。
- 6) 半導体デバイスを仮置きなどする時の容器は静電気を帯びにくいものを選定して下さい。

8.2 運搬

- 1) 製品の運搬時に衝撃を与えたり、落下させたりしないでください。
- 2) 多数の半導体デバイスを箱に入れて運搬する時は、接触電極面等を傷つけないようにやわらかい スペーサをモジュール相互間に入れて下さい。

9. 信頼性上からの注意事項(寿命設計)

ー般的にインバータをはじめとする電力変換装置の運転時、組み込まれているIGBTモジュールは温度の 上昇と下降が繰り返されます。この温度変化によりIGBTモジュールは熱ストレスを受けるため、その運転条件 に応じた寿命があります。装置の要求寿命に対しIGBTモジュール寿命が長くなる設計をする必要がなります。 このような寿命設計を行なうためにはIGBTモジュールの温度変化を確認し、パワーサイクル寿命から寿命設 計を行なうのが一般的です。寿命を充分に考慮しない場合、要求寿命に対してその寿命が短くなり、信頼性 が確保できないといった問題が発生する可能性があります。それゆえ信頼性を踏まえた寿命設計は重要とな ります。注意点などを含め詳しい説明を第11章「パワーモジュールの信頼性」に記載していますのでそちらを 参照願います。

10. その他、実使用上の注意事項

- ゲート駆動電圧(V_{GE})はモジュール端子部で測定し、所定の電圧が印加されていることをご確認ください。
 (ゲート駆動回路端で測定するとゲート駆動回路終端に使用するトランジスタ等の電圧ドロップの影響を 受けない電圧になりますので、IGBTに所定のV_{GE}が印加されていなくてもその不具合に気がつかず、素子 破壊に至る可能性があります)
- 2) ターンオン・ターンオフ時のサージ電圧等の測定は製品の主端子部で測定して下さい。仕様書に別途 測定端子の記載がある場合はその端子で測定してください。
- 3) 製品は最大定格(電圧,電流,温度等)の範囲内で御使用下さい。最大定格を超えて使用すると製品が 破壊する場合があります。特にV_{CES}を超えた電圧を印加した場合、アバランシェ降伏を起こして素子破壊 する場合がありますのでV_{CE}は必ず最大定格の範囲内でご使用ください。
- 4) 万一の不慮の事故で素子破壊した場合を考慮し、商用電源と半導体デバイスの間に適切な容量の ヒューズまたはブレーカを必ず付けて2次破壊を防いでください。
- 5) 製品の使用環境を十分に把握し、製品の信頼性寿命が満足できるか検討の上、適用してください。 製品の信頼性寿命を超えて使用した場合,装置の目標寿命より前に素子が破壊する場合があります。
- 6)本製品はパワーサイクル寿命以下で使用ください。パワーサイクル寿命には△ T_{vi}による場合の他に、 △ T_cによる場合があります。これはケース温度(T_c)の上昇下降による熱ストレスであり、本製品を使用 する際の放熱設計に依存します。ケース温度の上昇下降が頻繁に起こる場合は製品寿命に十分留意 してご使用下さい。
- 7)酸・有機物・腐食性ガス(硫化水素, 亜硫酸ガス等)を発生する場所での使用は避けて下さい。 酸・有機物・腐食性ガス(硫化水素, 亜硫酸ガス等)を含む環境下で使用された場合、製品機能・外観などの保証は致しかねます。
- モジュールを装置に実装する時などで主端子および制御端子に過大な応力を与えないで下さい。
 端子の変形により、接触不良や端子構造の破壊などを引き起こす場合があります。
- 9)本製品に使用する端子用のネジの長さは、外形図にしたがい正しく選定下さい。ネジが長いとケースが 破損する場合があります。

- 10) FWDのみ使用し、IGBTを使用しない場合(たとえばチョッパ回路等への適用時)は、使用しないIGBTの G-E間に-5V以上(推奨-15V,最大-20V)の逆バイアス電圧をかけて下さい。逆バイアス電圧が不足 するとIGBTがFWD逆回復時のdv/dtによって誤点弧を起こし、破壊する可能性が有ります。
- 11) ターンオンdv/dtが高いと対向アームのIGBTが誤点弧する可能性があります。誤点弧をさせないための最適な駆動条件(+ V_{GE} , - V_{GE} , R_{G} , C_{GE})でご使用下さい。
- 12) 製品を過大な温度で半田付けした場合、パッケージの劣化を引き起こす可能性があります。半田付け プロセスに注意してご使用ください。
- 13) ヒートシンクの平坦度はネジ取付け位置間で100mmで50 µ m以下、表面粗さは10 µ m以下にして下さい。 過大な凸反りがあったりすると本製品が絶縁破壊を起こし、重大事故に発展する場合があります。また、 過大な凹反りやゆがみ等があると、製品とヒートシンクの間に空隙が生じて放熱が悪くなり、熱破壊に つながることがあります。
- 14) 制御端子に過大な静電気が印加された場合、素子が破壊する場合があります。取り扱い時は 静電気対策を実施して下さい。
- 15)素子をヒートシンクに取付ける際、熱伝導を確保するためサーマルグリース等をご使用ください。 また塗布量が不足したり、塗布方法が不適だったりすると、サーマルグリースが十分に素子全体に 拡がらず、放熱悪化による熱破壊につながる事があります。サーマルグリースを塗布する際、製品全面に サーマルグリースが拡がっている事を確認してください。(実装後に素子を取外すとサーマルグリースの 拡がり具合を確認する事が出来ます。)
- 16) 仕様書記載のゲート抵抗R_Gはスイッチングロスを最小化するための推奨抵抗を記載していますが、 最適なR_Gは使用回路構成や使用環境によって変わります。したがって外付け抵抗R_Gの決定に際しては IGBTモジュールを使用する回路構成や使用環境において、スイッチングロス、EMC/EMI、スパイク電圧、 サージ電流や予期しない振動などの特性を充分検討した上で、仕様書に記載の内容から逸脱しないように 選定する必要がありますのでご注意ください。
- 17)一般的にIGBTには一次宇宙線や二次宇宙線による偶発故障モードが存在します。本故障モードは、 宇宙空間から飛来する一次宇宙線および一次宇宙線と大気との衝突で誘起された二次宇宙線が照射 されることで、素子破壊に到るものです。一次宇宙線の飛来量は高地の方が高く、故障率も高地の方が 高くなる傾向があります。一次宇宙線の飛来量は緯度や経度でも異なると言われており、注意が必要 です。また印加電圧が高い使用条件でも故障率が高くなります。高地,高電圧条件下で使用する場合 当社まで連絡をお願いいたします。
- 18)本節では主な実使用上の注意点を記載しましたが、詳細につきましてはモジュール個々の仕様書に 記載の注意事項、警告内容を遵守いただきますようお願いいたします。

第4章 トラブル発生時の対処方法

1. トラブル発生時の対処方法	4-2
2. 故障判定方法	4-7
3. 代表的なトラブルと対処方法	4-8

本章ではIGBTモジュールを取り扱う際のトラブルの対処方法について説明します。

1.トラブル発生時の対処方法

IGBTモジュールをインバータ回路等に適用した場合、配線ミス・実装上のミス等の異常により素子の破壊を 招くことがあります。また素子破壊等の異常が発生した場合、発生状況や原因を明確にした上で対策する 必要があります。その手引きとして表4-1に素子破壊モードから素子外部の異常現象を推定するための要因 解析表をまとめました。素子が破壊する場合、先ずこの表から破壊要因の調査をお願いします。表4-1を 用いて原因が解析できない場合、図4-1に更に詳細な要因解析図を用意しましたので、こちらを活用して 破壊要因を調査願います。素子が破壊しているかどうか?を確認する方法として故障判定方法を本章2項に、 代表的なトラブルとその対処方法を本章3項に記載しましたのでこちらもご活用ください。

素子外部の異常現象		原 因		素子破壊 モード	チェックポイント	代表例
	アーム短絡	短絡検出後、保護をかける(オフする)時にサージ電圧がSCSOAを 超えて素子が破壊		SCSOA (サージ電圧) 破壊	アーム短絡時の動作軌跡と 素子耐量のマッチング	_
短絡	直列7-ム短絡 (上下7-ム短絡)	デッドタイム不足による破壊	ゲート逆バイアス電圧不足で _{t off} が長くなった デッドタイム設定ミス	過熱 (短絡耐量) 破壊	素子の _{もoff} とデットタイムの マッチング	第7章 3項
		dv/dt誤動作を起こして短絡破壊	ゲート逆バイアス不足 ゲート配線長い	SCSOA	dv/dt誤ONチェック	本章 3.3項
		ノイズ等が原因で短絡破壊	ゲート駆動回路誤動作 ロジック回路誤動作		回路誤動作チェック	-
	出力短絡	ロックション (1995) 1995 -		過熱破壊	不具合発生状況チェック 素子耐量と保護回路の マッチング	-
	地 絡	配線ミス、配線誤接触			記線状態チェック	
過負荷(;	過電流)	過電流が流れ破壊	ロジック回路誤動作	過熱	ロジック回路チェック 温雪漆保護設定値の目直」	_
	古法西口语士	C-E間に素子耐圧を超える過電圧が印加	入力電圧過大	C-E間耐圧		
	直 流 电 庄 迥 入	され破壊	過電圧保護	オーバー	週电圧体設レハル見直し	_
	スパイク 電圧過大	ターンオフ時のサージ電圧がRBSOAを超ジ	えて破壊	RBSOA	ターンオフ動作軌跡と RBSOAのマッチング スナバ回路の見直し	第5章
過電圧		FWD逆回復時のサージ電圧が素子耐圧を		スパイク電圧と素子耐量の マッチング スナバ回路の見直し	2.4項	
		ゲート信号がパルス割れなどで非常に短い時間間隔のターンオフ→ターンオン(数 つっナーダー)を起こし、素子軒にを招う	ノイズによるロジック又は ゲート駆動回路誤動作	C-E間耐圧 オーバー	ロジック及びゲート信号チェッ ク	本章
		る過大な逆回復サージ電圧が発生して破 壊(以下、微小パルス逆回復現象)	主回路等からゲート信号線への 電磁誘導		大電流動作時のゲート信号/ 信号線の撚線/主回路~信 号線の距離	3.4項
· · · · ·			DC-DCコンバータ誤動作			
駆動電源	電圧減	∨ GEが設計値より低下して ∨ GE間電圧が 大きくなり、発熱(損失)が大きくなって破壊	駆動電源確立迄の時定数が 大きすぎる	過熱	回路チェック	-
			ゲート信号配線はずれ			
		静電気がG-E間に印加されゲートが破壊		G−E間耐圧 オーバー	作業状態チェック (静電気対策)	
ゲート過	電圧	ゲート配線が長すぎてG-E間に耐圧を超えるスパイク電圧が 発生し、破壊			ゲート電圧チェック	
ゲートオ	ープンでの駆動	受入試験等でゲートオーブンの状態でC-E間に電圧を印加(オン電圧/耐圧 測定等)して破壊		過熱破壊	ゲート電圧チェック	本章 3.1項
			端子取付けネジゆるみ		放熱条 件チェック	
	放熱能力不足	放熱能力不足で素子が異常過熱、最大 ジャンクション温度を超えて破壊	サーマルグリースの塗布不足	過 熱		-
過熱			冷却ファン停止			
	サーマル ランナウェイ	ロジック回路誤動作により、キャリア周波数の増加等が起こり、 総合損失が上昇して破壊			ロジック回 路チェック	_
応力	応力	製品内部の端子半田付け部等が応力疲	外部配線から端子に掛かる応力	製品内の電気配線	端子部に発生する応力/製品	本章
ני יטיי	振動	労を起こし断線する。	実装した他の部品等が振動して端 子に応力を与える	断線(オープン)	および他の部品の実装状態	3.2項
素子の適用条件と信頼性実 カのマッチングが取れてない		素子の適用条件(環境,温度変化,実装時の組立条件,保管状態等)と製品 の信頼性実力のマッチングが取れてなく、製品内部の配線,絶縁構造,外観 等が破壊		破壊モードは ケース毎に異なる	本章 図4-1に基づいて チェックください	本章 図4-1, 第11章

表4-1 素子の破壊モードと原因の推定

図4-1(a) IGBTモジュール故障解析図(※A~D記号は下図へ連結しています)

図4-1(b) モードA:RBSOA逸脱

図4-1(d) モードC:ジャンクション温度上昇過大

4-5

図4-1(f) モードE:信頼性及び、製品取り扱いに関する破壊

2. 故障判定方法

IGBTモジュールが破壊しているかどうか?は トランジスタ特性測定装置(トランジスタ・カーブ トレーサ(以下CT))によって、次の項目をチェック する事によって判定できます。

- G-E間漏れ電流
- C-E間漏れ電流
- (G-E間を必ずショートさせてください)

また、CTの代わりにテスタ等の電圧,抵抗が 測定できる装置を使用しても、簡易的に故障判定が できます。

2.1 G-E間チェック(※上記の①)

図4-2に示す様に、C-E間をショートし、G-E間の 漏れ電流或いは抵抗値を測定します。(G-E間には ±20Vを超える電圧は印加しないでください。テスタを 使用する場合、内部バッテリー電圧が20V以下であ ることを確認ください)

製品が正常であれば漏れ電流は数100nAオーダー (テスタ使用の場合、抵抗値は数十MΩ~無限大) になります。それ以外の状況では素子が破壊して いる可能性があります(一般的に素子が破壊して いるとG-E間ショートの状態になります)。

2.2 C-E間チェック(※上記の②)

図4-3に示す様に、G-E間をショートし、C-E間 (コレクタを+,エミッタをーに接続します。極性を 逆に接続した場合、FWDに導通してC-E間ショートに なります)の漏れ電流または抵抗値を測定します。

図4-2 G-E間 (ゲート)チェック

図4-3 C-E間チェック

製品が正常であれば仕様書記載の_{CES}最大値以下の漏れ電流になります(テスタを使用する場合、数十MΩ ~無限大)。それ以外では素子が破壊している可能性があります。(一般的に素子が破壊しているとC-E間 ショートの状態になります)

※ 注意

C-G間の耐圧測定は絶対に実施しないで下さい。耐圧測定した場合、酸化膜に過剰な電圧が加わり、 絶縁破壊に至ります。

3. 代表的なトラブルと対処方法

3.1 G-E間オープン状態での主回路電圧印加

G-E間オープン状態で主回路電圧印加すると、IGBTの帰還容量*C*_{res}を介して電流が流れるためG-E間容量 に電荷が充電されゲート電位が上昇します。これによりIGBTがオンして大きな電流が流れ素子が破壊します。 (第3章2節参照)G-E間はオープン状態を作り出さないよう、10kΩ程度の抵抗挿入などの対策をしてください。 製品の受入試験等の際にも、ロータリースイッチなどの機械スイッチで信号線の切り替えを行うと、切り替え 時にG-E間が瞬時オープンになります。C-E間に電圧印加したまま、機械スイッチで信号線の切り替えを行う と上記の現象で素子が破壊する事が有ります。また機械スイッチがチャタリングする場合も同様な期間が 存在し素子破壊します。破壊を防ぐため、必ず主回路(C-E間)電圧をOVまで放電してからゲート信号の 切り替えを行なってください。また複数の素子(2個組以上)で構成した製品において、受入試験等の特性試験 を行なう場合、測定素子以外のG-E間は必ず短絡してください。

図4-4はオン電圧測定回路の例です。この回路で測定手順を説明します、先ずゲート回路(GDU)をオフ状態 (*V*_{GE}≦0V)にしてからSW₁をオンしC-E間に電圧を印加します。次に、GDUよりG-E間に所定の順バイアス電圧 を印加してIGBTを通電させ、オン電圧を測定します。最後にゲート回路をオフ状態にしてSW₁をオフにします。 この様な手順を踏めば製品を破壊する事なく安全に製品の特性を測定する事が出来ます。

図4-4 オン電圧の測定回路

3.2 機械的な応力による製品破壊

RH984f

製品の端子に大きな外力や振動による応力が加わりますと、製品の内部電気配線の破壊などが起きる事 があります。製品を装置に実装する際、極力このような応力が加わらないように留意ください。

図4-5にゲート駆動用のプリント基板(Pt又はPCB板)を製品上部へ実装する際の例を示します。図4-5(1)に 示すようにPt板を固定せず実装しますと、装置を運搬する際の振動などでPt板が振動する可能性があります。 この振動で製品の端子に応力が加わり製品の内部電気配線の破壊などを起こすことがあります。この不具合 を防ぐ為には、図4-5(2)に示す様にPt板を固定する事が必要です。この対策を行なう際、十分な強度のある 専用の固定材などを用いてください。

図4-5 Pt板の固定方法

図4-6に平行平板を用いて主回路配線を行なう際の例を示します。図4-6(1)の様に電気配線用の+,-の導体に段差がある場合、製品の端子には上向きの引張り応力が絶えず加わった状態となり、製品内部の 電気配線の断線等を招きます。この不具合を防ぐためには図4-6(2)に示す様に導電性のスペーサをいれ、 平行平板導体の段差を無くすことが必要です。またPt板構造とする際にも配線高さの位置ずれを起こせば、 同様に端子に大きな引張り応力や外力が加わることになるため、同様の不具合を起こすことがあります。 この様な観点から、モジュールは各種応力を緩和して実装してください。

図4-6 平行平板配線を用いた時の実装

3.3 逆バイアスゲート電圧-VGE不足によるIGBT誤点弧

逆バイアスゲート電圧-V_{GE}が不足しますとIGBTの誤点弧を誘発し、上下アームIGBT両方がオンして短絡 電流が流れる事があります。短絡電流遮断時のサージ電圧や発生損失により製品が破壊する可能性があり ますので、装置を設計する際、必ず上下アーム短絡が発生していないことを確認ください(推奨-V_{GE}=15V)。 また、-V_{GE}が不足した場合のdv/dt発生による誤動作発生メカニズムの詳細を第7章1.4項に記載しています。 ご参照ください。

上下アーム短絡電流有無確認方法例を図4-7を示します。まずインバータの出力端子(U,V,W)をオープン (無負荷)にします。次にインバータを起動し各IGBTを駆動します。この時、図の様に電源ラインから流れる 電流を検出すれば上下アーム短絡電流有無が確認できます。もし、逆バイアスゲート電圧が十分であれば、 素子の接合容量を充電する非常に微小なパルス電流(定格電流の5%程度)が測定されます。しかし、逆バイ アスゲート電圧-V_{GE}が不足すると、この電流が大きくなります。正確に判定するには、誤オンを起こさない -V_{GE}(=15Vを推奨)でこの電流検出を行なった後に、所定の-V_{GE}で再度、電流を測定する方法を推奨いた します。

この両者で電流が同じ値であれば 誤点弧を起こしていないことになり ます。上記方法で誤点弧が確認さ れた場合の対策は、短絡電流がな くなるまで逆バイアスゲート電圧-VGFを増加させるか、G-E間に仕様 書に記載のCiesに対し2倍程度の容 量(C_{GE})をゲート抵抗 R_{G} のモジュー ル側へ付加する事を推奨します。但 し、単純にCGFを付加する方法では、 スイッチングタイムやスイッチング損 失が大きくなります。それらをCGE付 加前と同等とするためには、その一 例としてゲート抵抗R_GをC_{GE}付加前 に対して概ね半分へ変更することを 推奨いたします。この状態において 適用可否の検討を再度充分に行 なってください。

なお上下アームに短絡電流が流れる要因は上記のdv/dt誤点弧以外にもデットタイム不足があります。 この現象が起きている時にも図4-7に示す試験で短絡電流が観測されますので、逆バイアスゲート電圧-V_{GE} を増加しても短絡電流が減少しない場合、デッドタイムを増加するなどの対策を施してください。デッドタイムに 関しては第7章3項に詳しい説明がありますので、そちらを参照願います。

3.4 過渡オン状態からのダイオード逆回復(微小パルス逆回復)現象

IGBTモジュールはFWDを内蔵しています。このFWDの挙動に十分な注意を払うことは信頼性の高い 装置を設計するためには非常に重要です。この項では特に微小パルス逆回復現象という製品破壊に つながりやすく、よく知られていない現象について説明します。

微小パルス逆回復現象はIGBT駆動時にノイズなどによってゲート信号割れが起き、非常に過大な逆回復 サージ電圧が発生する現象です。図4-8に微小パルス逆回復による過大サージ電圧の発生タイミングチャートを示します。IGBTの V_{GE}に対して非常に短いオフパルス(Tw)が発生した場合、対向アーム側のFWDはオンし てから非常に短い時間で逆回復に入ることになります。本来の逆回復では充分なキャリアを蓄積してから 逆回復に入るのに対して、微小パルス逆回復ではFWDに充分なキャリアの蓄積がない状態で逆回復すること になります。これによりFWDの空乏層が急激なスピードで拡がるため、急峻なdi/dt, dv/dtを発生させることと なります。これが原因となってC-E(A-K)間に、非常に過大な逆回復サージ電圧が発生します。この現象に よって製品の耐圧保証値を超えるサージ電圧が発生すると素子破壊に繋がる可能性があります。 当社の評価ではTw<1μsでサージ電圧が急激に増加する事を確認しています。装置設計を行なう際、 このような短いゲート信号オフパルスが発生しないように注意してください。

図4-8 微小パルス逆回復による過大サージ電圧の発生

最小オフパルス幅を1µs以下に設定している運転モードがある装置においては、最小Twにおけるサージ 電圧が素子耐圧以下になることを確認願います。もしサージ電圧が素子耐圧を超える時は以下に記載の サージ電圧対策を実施してください。

- R_gを大きくする
- 回路インダクタンスを低減する
- スナバ回路を強化する
- *C*GEを付加する
- アクティブクランプ回路を付加する

図4-9に6MBI450U-120(1200V,450A)の微小パルス逆回復時のダイオード逆回復波形を示します。 *R*_Gを1.0Ωから5.6Ωに大きくすることで、サージ電圧が低減していることがわかります。

図4-9 微小パルス逆回復時の逆回復波形例

3.5 並列時の発振現象

製品を並列接続する際、主回路配線の均等性が非常に重要になります。配線の均等性が取れていない 場合、配線の短い素子にスイッチング時の過渡的な電流が集中し、素子破壊や長期信頼性の低下をまねく 可能性があります。また主回路配線の均等性が実現できてない回路では、主回路インダクタンスが各素子に 対しアンバランスになっており、スイッチング時のdi/dtによって各配線のインダクタンスにバラバラな電圧が 発生し、その電圧でループ電流などの異常発振電流が発生することで素子破壊につながる可能性もあります。 図4-10(1)にエミッタ部の配線インダクタンスを極端にアンバランスにした場合の振動現象を示します。

これは、並列接続したエミッタ部の配線ループに振動電流が流れゲート電圧を振動させることで、IGBTが 高速にオンオフした振動現象を示しています。この対策として各G-E間配線にコモンモードコアを挿入し、 エミッタ部にループ電流を流さなくする方法があります。図4-10(2)の影響をなくした場合の波形を示します。 波形から判るように、振動が抑制されています。

このように、主回路配線設計を行なう際には回路の均等性に十分注意してください。

3.6 半田付けプロセスの注意

IGBTモジュールの端子にゲート駆動回路や制御回路を半田付けする時、半田温度が過剰に高くなりますと、 ケース樹脂材料が溶ける等の不具合が発生する可能性があります。仕様書に端子半田付け時の耐熱試験 項目がありますので、この条件を超える半田付けプロセスでの組立は行なわないようにお願いします。 一般的な製品仕様書に記載している端子耐熱性の試験条件を下記に示しますので、ご参考ください。

```
半田温度: 260±5℃
投入時間: 10±1sec
回数 : 1回
```

図4-10 2並列時のコレクタ電流・ゲート電流波形

3.7 IGBTモジュールのコンバータ部への適用

IGBTモジュール内に使用しているダイオードには定格I²tがあります。定格I²tとは持続時間の非常に短い 電流パルス(10ms未満)を非繰り返しで順方向に流した時の過電流容量の上限値を表します。Iは実効電流で、 tはパルス持続時間を示します。整流回路(またはコンバータ回路)などに使用する場合、起動時にラッシュ 電流が流れますのでこの電流を定格I²t以下で使用願います。また、定格I²tを超える場合、例えば抵抗と コンダクタを並列接続した起動回路を交流電源と整流回路間に接続するなどの対策をお願いします。

3.8 EMCノイズ対策

インバータ・UPSなどの電力変換装置は欧州のCEマーキングや国内のVCCI規格への対応が必要で、EMI ノイズ(装置が運転時に発生する伝導性および放射性のノイズ)を規格値以下に抑制することが装置の設計に おいて重要な課題となっています。

IGBTモジュールは世代を経るごとに特性改良による高速スイッチング化・低損失化が進んできているため、 IGBTをスイッチングする際に発生する高いdv/dt,di/dtが放射性ノイズの原因となる場合が多くなってきて います。放射性ノイズの主な要因は、IGBTがターンオン(対向アーム側のFWDが逆回復)する際に生じる 高いdv/dt,di/dtがトリガとなって、半導体デバイスの接合容量などと配線上のインダクタンスとで生じる高周波 のLC共振によるものと考えられます。

IGBTモジュールがスイッチングすることによって発生する放射性ノイズを低減させるためには、駆動条件の 見直しによるスイッチング特性、特にターンオン特性をソフト(低速)化することが有効です。第7章を参照し、 適切な駆動条件を検討してください。

図4-11にゲート抵抗を大きくすることによってスイッチング特性をソフト化した場合の放射性EMIノイズ特性の測定例を示します(非測定素子型式:2MBI150SC-120 1200V/150A)。標準ゲート抵抗(5.6Ω)による放射性ノイズ測定結果に対し、ゲート抵抗を標準の2倍程度とすることによって、10dB以上放射性ノイズを低減させることができます。

ただしスイッチング特性をソフト化して放射性 ノイズを抑制すると、スイッチング損失は増加傾向 となりますので、装置の運転条件やモジュール 冷却条件などとのバランスを考慮しながら駆動 条件を設定することが重要です。

また放射性ノイズの一般的な対策例を表4-2に 示します。放射性ノイズは装置の配線構造や 材質・回路構成などによりその発生要因・ノイズ レベルが異なります、それぞれの対策例が 有効かどうかは個別に検証が必要です。

図4-11 ゲート抵抗を変えたときの 放射性ノイズ測定結果

対 策	内容	備考
駆動条件の見直し	R _G (特にターンオン側)をカタログ記載の 標準値より2~3倍の範囲で大きくする。	スイッチング損失が大きくなる。 スイッチング時間が長くなる。
(dv/dt,di/dtの低減)	G-E間に小容量のコンデンサを接続する。 容量は帰還容量(<i>C_{res})~入力容量(C_{ies})程度。</i>	スイッチング損失が大きくなる。 スイッチング時間が長くなる。
スナバコンデンサを モジュールと最短で接続	スナバコンデンサとIGBTモジュールの間の 配線を最短にする(モジュールの端子に接続)。	スイッチング時のサージ電圧や dv/dt抑制にも効果あり。
配線インダクタンスの 低減	直流バスラインを平行導体化して インダクタンスを低減する(銅バーの適用など)。	同上
フィルター	装置の入出カにノイズフィルターを挿入する。	各種市販品あり
配線のシールド	入出カケーブルをシールドして ケーブル部分の放射性ノイズを低減する。	
装置ケースの金属化	装置筐体を金属化し、装置から 放射されるノイズを抑制する。	

表4-2 放射性ノイズ対策例

第5章 保護回路設計方法

1	. 短絡(過電流)保護	5-2
2	2. 過電圧保護	5-8

本章では、IGBTモジュールの保護回路設計方法について説明します。

1. 短絡(過電流)保護

1.1 短絡耐量について

装置が何らかの異常により短絡状態になるとIGBTのコレクタ電流が増加し所定の値を超えるとC-E間電圧 が急増します。この特性により短絡時のコレクタ電流を一定の値以下に抑制しますが、IGBTに高電圧・ 大電流の責務が印加された状態になりますので、可能な限り短時間でこの責務を取り除く必要があります。 しかし、ゲート駆動回路は短絡検出後、電流を遮断するまでの時間に制約があります。このため、 IGBTモジュールは短絡耐量を規定しています。

アーム短絡と出力短絡について、短絡耐量の考え方を以下に説明します。

1.1.1 アーム短絡

アーム短絡は、短絡開始と共に電流Cは急激に上昇し、飽和後に若干低下します。短絡(飽和)電流値 I_{sc} は V_{ge} と素子出力特性およびジャンクション温度 T_{vj} で決まり、 V_{DC} , R_{g} ,PWには殆ど依存しません。短絡耐量は 通電時間PWで表し V_{ge} , T_{vj} , V_{DC} 条件を指定したうえで規定します。

図5-1にアーム短絡模擬試験回路図と波形例を示します。短絡発生時、規定のPW(短絡耐量)内で遮断 する必要がありますので、ゲート駆動回路の定数を調整願います。

1.1.2 出力短絡

出力短絡では短絡線がインダクタンス分を持っているので、短絡開始時の電流波形はアーム短絡の場合と 異なります。この場合電流上昇率di/dtは、

di/dt = V_{DC} / L (A/sec) で表され、短絡開始時からの時間をt(sec)とすれば、

 $I_{\rm C}$ = di/dt × t (A)

で計算できます。L。到達値はインダクタンス分や駆動回路(VGE過渡上昇)等に依存しますが、ピーク値に達し 飽和した後はVGEが上昇しアーム短絡時と同じになります。

図5-2に出力短絡模擬試験回路と波形を示します。出力短絡時の短絡耐量は図5-2(b)波形例に示します (PW)で表されます。電流上昇中、V_{DC}はインダクタンスLにかかり、IGBTはV_{CE(sat}程度の電圧のため、IGBTの 責務はアーム短絡と比べてきわめて低いので、この期間は短絡耐量の時間に含めず考えることができます。

図5-2 出力短絡模擬試験回路及び波形

短絡耐量はC-E間印加電圧 V_{CE}やG-E間印加電圧 V_{GE}、接合温度 T_{vi}などの条件に依存します。一般的に 短絡耐量は電源電圧 V_{DC}が高い程、また接合温度 T_{vi}が高い程短くなります。

また短絡時、V_{GE}は短絡動作影響により、持上ることがありますので注意してください。

なお各シリーズの短絡耐量はアプリケーションマニュアルもしくはテクニカルデータを参照願います。

1.2 短絡モードと発生原因

インバータ装置における短絡モードと発生原因について表5-1に示します。

表5-1 短絡モードと発生原因

1.3 地絡(過電流)検出方法

1) 過電流検出器による検出

前述しましたようにIGBTは短時間での保護が必要となりますので、過電流検出からターンオフ完了までの 各回路の動作遅れ時間が最小になるように設計してください。

なお、IGBTのターンオフ時間は極めて早いので通常のゲート駆動信号で過電流を遮断するとC-E間電圧のはね上がりが大きくなり、IGBTが過電圧で破壊(RBSOA破壊)する可能性があります。過電流を遮断する際、IGBTのターンオフ(ソフトターンオフ)をゆるやかにさせることを推奨します。

図5-3に過電流検出器の挿入方法を、表5-2にそれぞれの方法の特徴と検出可能な内容を示します。 どのような保護が必要か検討し、適切な方法を選択して下さい。

図5-3 過電流検出器の挿入方法

表5-2	過電流検出器の挿入位置と検出内容
------	------------------

検出器の挿入位置	特徴	検出内容
平滑コンデンサと直列に挿入 図5-3/①	・AC用CTが使用可能 ・検出精度が低い	 ・アーム短絡 ・直列アーム短絡 ・出力短絡 ・地絡
インバータの入力に挿入 図5-3/②	・DC用CTの使用が必要 ・検出精度が低い	同上
各素子と直列に挿入 図5-3/③	・DC用CTの使用が必要 ・検出精度が高い	 ・アーム短絡 ・直列アーム短絡 ・出力短絡 ・地絡
インバータの出力に挿入 図5-3/④	・高周波出力の装置では AC用CTの使用可能 ・検出制度が高い	・出力短絡 ・地絡

2) V_{CE(sat)}による検出

この方法は、表5-1に示す全ての短絡事故に対する保護が可能であり、過電流検出から保護までの動作 がゲート駆動回路側で行われるので、最も高速な保護動作が可能となります。図5-4に V_{CE(sat})検出による 短絡保護回路例を示します。

図5-4 V_{CE(sat)}検出による短絡保護回路例

この回路はIGBTのC-E間電圧をダイオードD₁を介して監視する回路です。

ターンオン:フォトカプラがオンするとT₂,T₄がオンしIGBTに+のゲート電圧を印加します。またフォトカプラオン より、抵抗R₁とダイオードD₄を通してコンデンサC₁を充電します。このときコンデンサC₁の電圧によって、動作 が変わります。

【短絡保護動作】

IGBTオン後、短絡状態が発生するとIGBTの V_{CE} が上昇します。IGBTの V_{CE} が(コンデンサC₁の電圧-ダイオードD₁の V_{F} - V_{EE})より高くなると、ダイオードD₁がオフとなり、コンデンサC₁の電圧が再び上昇します。 コンデンサC₁の電圧が(ツェナーダイオードD₂の V_{Z} +トランジスタT₁の V_{BE})より高くなると短絡保護動作します。 短絡保護動作では、ツェナーダイオードD₂を通してトランジスタT₁のベースに電流が流れトランジスタT₁が オンします。トランジスタT₁オンによりトランジスタT₂,T₄がオフし、印加していた+のゲート電圧が遮断します。 フォトカプラはオンしているため、トランジスタT₃オン,トランジスタT₅オフ状態を保持しています。トランジスタ T₄,T₅が同時オフとなるためゲート蓄積電荷はR_{GE}を通してゆっくり放電します。この効果によりIGBTがターンオ フする際の過大なスパイク電圧の発生を抑制できます。図5-5に短絡保護動作波形例を示します。 【通常動作】

IGBTオン後、コンデンサC₁の電圧が(ツェナーダイオードD₂の V_Z +トランジスタT₁の V_{BE})以下の電圧を保持 することで、IGBTのオン状態を保持します。

フォトカプラがオフすると、トランジスタT₂,T₄オフ、トランジスタT₃オフ,T₅オンとなり、IGBTに-のゲート電圧を 印加します。コンデンサC₁の電荷はダイオードD₃トランジスタT₅を通して放電し0Vにリセットします。

図5-5 短絡保護動作波形例

2. 過電圧保護

2.1 過電圧の発生要因と抑制方法

1) 過電圧発生要因

IGBTはスイッチング速度が速いため、IGBTターンオフ時、またはFWD逆回復時に高いdi/dtを発生し、 モジュール周辺の配線インダクタンスによるL・(di/dt)電圧(ターンオフサージ電圧)が発生します。

ここではIGBTターンオフ時の電圧・電流波形を例にとって発生要因と抑制方法を紹介し、具体的な回路例 (IGBT,FWD共に適用可)を説明します。ターンオフサージ電圧を測定するための簡易的な回路として図5-6に チョッパ回路例を、図5-7にIGBTがターンオフする際の動作波形を示します。

図5-6 チョッパ回路

図5-7 動作波形

ターンオフサージ電圧はIGBTがターンオフする際の主回路電流の急激な変化によって、主回路の浮遊 インダクタンスに高い電圧が誘起されることにより発生します。

ターンオフサージ電圧の尖頭値は次式で求められます。

 $V_{CESP} = Ed + (-L \cdot dIc / dt) \dots (1)$

dlc/dt:ターンオフ時のコレクタ電流変化率の最大値

V_{CESP}がIGBTのC-E間耐圧(V_{CES})を越えますと破壊に至ります。

2) 過電圧抑制方法

過電圧発生要因であるターンオフサージ電圧を抑制する方法として下記の方法があります。

- a. IGBTに保護回路(=スナバ回路)を付けてサージ電圧を吸収する。スナバ回路のコンデンサには フィルムコンデンサを用い、IGBTモジュールの近くに配置して高周波サージ電圧を吸収させます。
- b. IGBT駆動回路の V_{GE} や R_{G} を調整しdi/dtを小さくする(アプリケーションマニュアル第7章 「ゲート駆動回路設計方法」を参照下さい)。
- c. 電解コンデンサをできるだけIGBTの近くに配置し、配線インダクタンスを低減する。低インピーダンス タイプのコンデンサを用いるとさらに効果的です。
- d. 主回路及びスナバ回路の配線インダクタンスを低減するために、配線をより太く・短くする。配線に 銅バーを使用する。また、並列平板配線(ラミネート配線)にして、配線インダクタンスを低減することは 大変効果的です。

2.2 スナバ回路の種類と特徴

スナバ回路には全ての素子に1対1で付ける個別スナバ回路と直流母線間に一括で付ける一括スナバ回路 があります。

1) 個別スナバ回路

個別スナバ回路の代表的な例として、下記のスナバ回路があります。

- a. RCスナバ回路
- b. 充放電形RCDスナバ回路
- c. 放電阻止形RCDスナバ回路

表5-3に各個別スナバ回路の接続図と特徴及び主な用途を示します。

2) 一括スナバ回路

一括スナバ回路の代表的な例として、下記のスナバ回路があります。

- a. Cスナバ回路
- b. RCDスナバ回路

最近ではスナバ回路簡素化の目的で一括スナバ回路が使用されることが多くなってきています。

表5-4に各一括スナバ回路の接続図と特徴及び主な用途を、表5-5に一括Cスナバ回路を用いる場合の スナバ容量の目安を、図5-8にそのターンオフ波形例を示します。

表5-3 個別スナバ回路の接続図と特徴及び主な用途

スナバ回路接続図		主な用途
RCスナバ回路	・ターンオフサージ電圧抑制効果が大きい。	溶接機
	・チョッパ回路に最適	スイッチング
	・ 大容量のIGBTに適用する際には、スナバ抵抗を低い値に	電源
	 しなければならず、この結果ターンオン時のコレクタ電流が	
•o	 増大し、IGBTの責務が厳しくなる。	
	・ RCスナハ回路と異なり、スナハタイオートを追加している	
	のでスナバ抵抗値を大きくでき、ターンオン時のIGBTの責務	
	の問題を回避できる。	
P	・ 放電阻止形RCDスナバ回路と比較してスナバ回路の発生	
	損失(主にスナバ抵抗で発生)が極めて大きくなるため、 	
	高周波スイッチング用途には適さない。	
	· 充放電形RCDスナバ回路のスナバ抵抗における発生	
	損失は下式で求められる。	
Ŭ	$P = L \cdot Io^2 \cdot f + C_s \cdot Ed^2 \cdot f$	
	$1 = \frac{1}{2} + \frac{1}{2}$	
lĹ ੈ ੈ ↓	L:主回路の浮遊インダクタンス	
	lo:IGBTのターンオフ時コレクタ電流	
	Cs:スナバコンデンサ容量	
● N	Ed:直流電源電圧	
	f :スイッチング周波数	
放電阻止形スナバ回路	- カ、ナフサ、で「「「「」」、日本で、1	 インバータ
• • P	⁻ → → 1 → 1 → 一→ モビ抑制刈米かのる。 	· · · · ·
J∮⊐ ∔ ¢	・ 向向波入1ッテンツ用述に取迴。	
	・ 人) ハ回路 との 先 主 損 大 か 少 ない。	
• • • • •		
	$P = \frac{L \cdot Io^{-} \cdot f}{2}$	
┘ ° ┡┘ ╤│	L:王回路の浮遊インタクタンス	
	lo:IGBTのターンオフ時コレクタ電流	
••••••••••••••••••••••••••••••••••••••	f ∶スイッチング周波数	

スナバ回路接続図	特 徵(注意事項)	主な用途
	・最も簡易的な回路 ・主回路インダクタンスとスナバコンデンサとによる LC共振回路により電圧が振動し易い。	インバータ
	・スナバダイオードの選定を誤ると高いスパイク電圧が 発生することや、スナバダイオードの逆回復時に電圧が 振動することがあります。	インバータ

表5-4 一括スナバ回路の接続図と特徴及び主な用途

表5-5 一括Cスナバ容量の目安

	項目	ゲート駆動条件*1		主回路浮遊	スナバ容量Cs
素子定格		$-V_{\rm GE}(V)$	$R_{\rm G}(\Omega)$	インダクタンス(μH)	(<i>μ</i> F)
	50A		≧43		
	75A		≧30	_	0.47
	100A		≧13		
600V	150A	≦15	≧9	≦0.2	1.5
	200A		≧6.8	≦0.16	2.2
	300A		≧4.7	≦0.1	3.3
	400A		≧6	≦0.08	4.7
	50A		≧22		
1200V	75A	≦15	≧4.7	_	0.47
	100A		≧2.8		
	150A		≧2.4	≦0.2	1.5
	200A		≧1.4	≦0.16	2.2
	300A		≧0.93	≦0.1	3.3

*1:VシリーズIGBTの代表的なゲート駆動条件を示す。

図5-8 2MBI300VN-120-50(1200V/300A)ターンオフ電流・電圧波形

2.3 放電阻止形RCDスナバ回路の設計方法

IGBTのスナバ回路として、最も合理的と思われる放電阻止形RCDスナバ回路の基本的な設計方法について説明します。

1) 適用可否の検討

図5-9に放電阻止形RCDスナバ回路を 適用した場合のターンオフ時の動作軌跡を 示し、図5-10にターンオフ時の電流・電圧 波形を示します。

図5-9 ターンオフ時の動作軌跡

 V_{CE}

 V_{CEP}

放電阻止形RCDスナバはIGBTの C-E間電圧が直流電源電圧を越え てから動作し、その理想的な動作 軌跡は点線で示したものになります。 しかし実際の装置ではスナバ回路 の配線インダクタンスやスナバダイ オード過渡順電圧降下の影響による ターンオフ時のスパイク電圧が存在 するため、実線で示すような右肩の 膨らんだものになります。

放電阻止形RCDスナバ回路を適用 するためには、適用後のターンオフ 動作軌跡がIGBTのRBSOA内に

収まっているか検証する必要があります。

なお、ターンオフ時のスパイク電圧は次式で求められます。

$$V_{CESP} = Ed + V_{FM} + (-L_{S} \cdot dlc/dt) \quad \dots \quad (2)$$

 $I_{\rm c}$

 I_0

E_d: 直流電源電圧

- *V_{FM}* : スナバダイオード過渡順電圧降下※ L_s : スナバ回路の配線インダクタンス
- dlc/dt: ターンオフ時のコレクタ電流変化率最大値

※ スナバダイオードの一般的な過渡順電圧降下の 参考値は下記の通りです。

V_{CESP}

図5-10 ターンオフ時の電流・電圧波形

600Vクラス:20~30V 1200Vクラス:40~60V

2) スナバコンデンサ(Cs)容量値の求め方

スナバコンデンサに必要な容量値は次式で求められます。

$$C_{s} = \frac{L \cdot Io^{2}}{\left(V_{CEP} - Ed\right)^{2}} \quad \dots 3$$

L : 主回路の浮遊インダクタンス

- 1。: IGBTのターンオフ時コレクタ電流
- V_{CEP}: スナバコンデンサ電圧の最終到達値
- E_d: 直流電源電圧

V_{CEP}はIGBTのC-E間耐圧以下に抑える必要があります。 また、スナバコンデンサには高周波特性の良いもの(フィルムコンデンサ等)を選んでください。

3) スナバ抵抗(R_s)値の求め方

スナバ抵抗への要求機能は、IGBTが次のターンオフ動作を行うまでにスナバコンデンサの蓄積電荷を 放電する事です。IGBTが次のターンオフ動作を行うまでに、蓄積電荷の90%を放電する条件でスナバ抵抗を 求めると次式のようになります。

f:スイッチング周波数

スナバ抵抗値をあまりにも低い値に設定すると、スナバ回路電流が振動しIGBTのターンオン時のコレクタ 電流尖頭値も増えるので、④式を満足する範囲内で極力高い値に設定して下さい。 スナバ抵抗の発生損失P(R_s)は抵抗値と関係なく次式で求められます。

4) スナバダイオードの選定

スナバダイオードの過渡順電圧降下は、ターンオフ時のスパイク電圧発生要因の一つになります。 またスナバダイオードの逆回復時間が長いと、高周波スイッチング動作時にスナバダイオードの発生損失 が大きくなり、スナバダイオードの逆回復が急激であると、スナバダイオードの逆回復動作時にIGBTのC-E 間電圧が急激に大きく振動します。スナバダイオードには、過渡順電圧が低く、逆回復時間が短く、逆回復 動作がソフトなものを選んで下さい。

5) スナパ回路配線上の注意事項

スナバ回路の配線インダクタンスはスパイク電圧発生要因となりますので、回路部品の配置も含めて インダクタンス低減の工夫を行って下さい。

2.4 サージ電圧特性例

サージ電圧は運転条件、駆動条件、回路条件などにより様々な挙動を示します。一般にサージ電圧は C-E間電圧が高いほど、回路インダクタンスが大きいほど、コレクタ電流が大きいほど、高くなる傾向に あります。サージ電圧特性の一例として、図5-11にIGBTターンオフ、FWD逆回復時のサージ電圧の電流 依存性を示します。この図からわかるように、IGBTターンオフサージ電圧はコレクタ電流が大きい程高く なりますが、FWD逆回復サージ電圧は低電流側が大きくなる傾向にあります。一般に逆回復サージ電圧は コレクタ電流が定格電流に対して数分の1から数十分の1の低電流領域で大きくなります。

このように、サージ電圧は運転条件、駆動条件、回路条件などにより様々な挙動を示します。それゆえ システムとして使用が想定されるすべての動作条件で、電流と電圧が仕様書に記載のRBSOA内に収まる ことを確認して使用願います。

図5-11 IGBTターンオフ、FWD逆回復時のサージ電圧の電流依存性 (2MBI450VN-120-50)

2.5 サージ電圧抑制回路 ークランプ回路構成例-

ー般的に、主回路インダクタンスの低減やスナバ 回路を設けることによってC-E間のサージ電圧を 抑制することが可能です。しかしながら装置の運転 条件などによってはサージ電圧の抑制が困難な 場合があります。このような場合に用いられる サージ電圧抑制回路の1つとしてアクティブクランプ 回路があります。

図5-12にアクティブクランプ回路の一例を示します。 基本的な回路構成は、C-E間にツェナーダイオードを 付加するとともに、そのツェナーダイオードと逆通電 方向にダイオードを直列に接続しています。

この回路でC-E間にツェナーダイオードの降伏電圧を 超える電圧が発生した場合、ツェナーダイオードが降伏し

図5-12 アクティブクランプ回路例

コレクタからゲートに電流が流れます。この電流とR_GによりG-E間に+電圧が加わります。+電圧がIGBTの V_{GE(th)}を越えるとIGBTにコレクタ電流が流れ、C-E間電圧はツェナーダイオードの降伏電圧と概ね等しく なるようにクランプします。アクティブクランプ回路を設けることで確実なサージ電圧抑制が可能となります。 一方、ツェナーダイオードの降伏電流はIGBTをオンさせるように流れるため、ターンオフ時の電流変化率di/dt はクランプ回路付加前より緩やかになり、ターンオフ時間が長くなります(図5-13参照)。それゆえ損失増大 などの要因がありますので、各種設計検証を行なった上でクランプ回路の適用をお願いいたします。

図5-13 アクティブクランプ回路適用時の波形例

第6章 放熱設計方法

1. IGBTモジュールの発生損失	6-2
2. 昇圧チョッパ回路の発生損失計算方法	6-3
3. 三相2レベルインバータ回路の発生損失計算方法	6-4
4. 三相ダイオード整流回路の発生損失計算方法	6-8
5. ヒートシンク(冷却体)の選定方法	6-9
6. IGBTモジュールへの取付け方法	6-12

1. IGBTモジュールの発生損失

IGBTモジュールはIGBTとFWDで構成しており、個々の発生損失の合計がIGBTモジュール全体の発生 損失となります*。また発生する損失は図6-1に示すように定常時の導通損失とスイッチング時のスイッチング 損失があります。以上を整理すると図6-2のようになります。

図6-1 IGBTとFWDのスイッチング波形と発生損失

図6-2 IGBTモジュール発生損失の分類

RC-IGBTはIGBTとFWDを1素子で構成していますが、素子内のIGBT部で発生する損失、FWD部で発生する損失と 考えれば、通常のIGBTモジュールと発生損失の考え方は同じです。また、RB-IGBTはFWD部がありませんが、 RB-IGBTをFWDとして動作させる場合があり、その際に導通損失(*P_{sat}*)と逆回復損失(*P_r*)が発生します。 IGBT部の導通損失はデータシートに記載のオン電圧-コレクタ電流特性(V_{CEsat} - L_c 特性)から、FWD部の 導通損失はオン電圧-順方向電流特性(V_F - L_f 特性)から計算します。また、各スイッチング損失はスイッチング エネルギー-コレクタ電流/順方向電流特性(E_{on} - L_c , E_{off} - L_c , E_{rr} - L_c 特性)から計算します。これらの発生損失から 放熱設計を行い、素子のジャンクション温度 T_{vj} が定格を越えないようにします。

したがって、ここで使用するオン電圧やスイッチング損失の値には、ジャンクション温度T_yが高温時のデータを使用して計算して下さい。

2. 昇圧チョッパ回路の発生損失計算方法

図6-3に示すような昇圧チョッパ回路の場合、IGBT(T₁)およびFWD(D₁)に流れる電流を矩形波の連続と 考えれば、T₁,D₁の単位時間当たりの発生損失(単位:W)は以下の式で近似計算することができます。

図6-3 昇圧チョッパ回路での発生損失

ただし、

$V_{ ext{CEsat}}$: コレクタ電流がなのときのIGBTコレクターエミッタ間飽和電圧
d	: IGBTのオンデューティ = <i>t</i> ₁ / <i>t</i> ₂
$E_{\rm on}, E_{\rm off}$:コレクタ電流が I_c のときのIGBTターンオン/ターンオフエネルギー
$f_{\rm c}$: キャリア周波数(スイッチング周波数)=1 / t ₂
V _{cc}	: スイッチング電圧
$V_{\rm cc0}$: データシートに記載しているスイッチング電圧
α	: スイッチングエネルギーのスイッチング電圧依存性係数
$V_{\rm F}$: FWD電流がfのときのFWD順方向飽和電圧
E _{rr}	: FWD電流がよのときの逆回復エネルギー

スイッチングエネルギーがスイッチング電圧に比例するとみなせば、α = 1とすることができます。

ー方、V_{CEsat}, V_F, E_{on}, E_{off}, E_{rr}の値は素子のジャンクション温度に依存しますので、データシート記載の温度と 異なる場合はデータシートのグラフを参考に換算して下さい。

また、*E*_{on}, *E*_{off}, *E*_{rr}の値はゲート抵抗値*R*_Gによっても変化しますので、データシートのゲート抵抗依存性グラフを参考に換算を行って下さい。

3. 三相2レベルインバータ回路の発生損失計算方法

三相 2 レベル電圧型インバータでPWM 制御を行う場合の損失計算は図 6-4 に示すようにIGBTやFWDに 流れる電流値や動作条件が常に変化しているため、発生損失を正確に計算するには複雑な計算が必要に なります。ここではIGBTモジュールの特性カーブ近似式を用いてインバータ回路でのIGBT/FWDの発生損失 を簡易的に計算する方法を紹介します。

計算を行うにあたり、以下の条件を前提とします。

- PWM 制御三相 2 レベルインバータであること
- PWM は三角波比較の正弦波変調方式であること
- 出力電流は理想的な正弦波であること

インバータの出力相電流の実効値をなとすると正弦波の電流波形は以下の式で表されます。

$$i_{\rm o}(\theta) = \sqrt{2}I_{\rm o}\sin\theta$$
(3)

またIGBTのオンデューティ波形 $d(\theta)$ は、変調率をm,電流の遅れ力率を $\cos \phi$ とすると以下の式で表されます。

図6-4 正弦波変調2レベルインバータの動作波形

IGBTに定常コレクタ電流 $_{L}$ が流れていてる場合、IGBTのコレクタ-エミッタ間にオン電圧 $V_{CE(sat)}$ が発生します。 このオン電圧の大きさはコレクタ電流に依存し、 $V_{CE(sat)}$ の $_{L}$ 依存性グラフがデータシートに記載されています。 インバータにおけるIGBTの導通損失を計算するために、 $V_{CE(sat)}$ の $_{L}$ 依存性を図6-5で示すように直線近似 した場合、以下の式で表されます。

同様に、FWDのオン電圧 V_Fの順電流 F依存性も直線近似した場合、以下の式で表されます。

$$V_{\rm F} = r_{\rm F} \cdot I_{\rm F} + V_{\rm F0}$$

.....(6)

図6-5 出力特性の近似

(3)式,(4)式および(5)式より、インバータ回路での1アームあたりのIGBTの導通損失P_{sat}は、

と求められます。

同様にして、1アームあたりのFWDの導通損失 P_fは、

と求められます。

次に、スイッチング損失を計算するために、データシートに記載の E_{on} , E_{off} , E_{rr} の I_{c} 依存性グラフの近似式を 求めます。図6-6に示すように、スイッチングエネルギーの I_{c} 依存性カーブを直線近似し、スイッチング電圧 依存性係数 α = 1とすると、 E_{on} , E_{off} , E_{rr} はそれぞれ以下の式で表すことができます。

図6-6 スイッチングエネルギーのLc依存性の近似

(9)式を用いて、インバータ回路における1アームあたりのIGBTのターンオン損失P_{on} は以下の式で求められます。

同様にして、ターンオフ損失Poff、FWDの逆回復損失Prr は以下の式で計算できます。

以上の計算より、1アームあたりのIGBT部の発生損失P_{IGBT}、FWD部での発生損失P_{FWD}は以下のように計算できます。

実際には、6.2項でも述べたように、 $V_{CE(sat)}, V_{F}, E_{on}, E_{off}, E_{rr}$ の値はジャンクション温度 T_{vj} やゲート抵抗値 R_{G} に 依存して変化しますので、データシートに記載の T_{vj} 依存性グラフや R_{G} 依存性グラフを参考に換算して計算して 下さい。

なお、弊社が公開しているIGBTシミュレータ*では、データシートの特性カーブをより精度よく近似し、また ジャンクション温度依存性も考慮した計算を行っています。したがって、上記の計算式より求めた値と一致 しない場合があります。ご注意ください。

* Fuji IGBTシミュレータ: https://www.fujielectric.co.jp/products/semiconductor/model/igbt/simulation/

4. 三相ダイオード整流回路の発生損失計算方法

整流回路に使用するダイオードには逆回復動作がないためスイッチング損失を考慮する必要はありません。 したがって、ダイオード整流回路での発生損失を求めるにはダイオードの導通損失のみ計算すればよいこと になります。

図6-7に示す三相ダイオード整流回路におけるダイオード1アームの損失波形を計算します。ダイオード電流 波形は回路条件によって変化しますが、ここでは同図に示すように連続する正弦半波の電流が流れると みなして計算を行います。

図6-7 三相ダイオード整流回路と電流波形

図6-7に示す整流された電流灯。の実効値をなとし、ダイオードの出力特性を直線近似式(3)で表した場合の ダイオード1アームあたりの損失P_dは以下の式で計算できます。

$$P_{di} = \frac{1}{2\pi} \cdot 2 \int_{0}^{\frac{\pi}{3}} \{r_{F}i_{F}(\theta) + V_{F0}\} \cdot i_{F}(\theta)d\theta$$

= $\frac{1}{2\pi} \cdot 2 \int_{0}^{\frac{\pi}{3}} \{r_{F} \cdot \sqrt{2}I_{d}\sin(3\theta) + V_{F0}\} \cdot \{\sqrt{2}I_{d}\sin(3\theta)\}d\theta$
= $\frac{2\sqrt{2}}{3\pi}V_{F0}I_{d} + \frac{1}{3}r_{F}I_{d}^{2}$

5. ヒートシンク(冷却体)の選定方法

電力用ダイオード,IGBT,トランジスタ等のパワーモジュールは電極部と取付けベースが絶縁されているもの が多く、一つのヒートシンク上に複数の素子を取付けて用いることが出来るため、実装が容易でコンパクトな 配線が可能となります。これらの素子を安全に動作させるためには、動作時に各素子が発生する損失(熱)を 効率よく逃がしてやる必要があり、ヒートシンクの選定は重要な鍵となります。以下にヒートシンクの選定に おける基本的な考え方を示します。

5.1 定常状態の熱方程式

半導体の熱伝導は電気回路に置き換えて解くことができます。ここでIGBTモジュールのみをヒートシンクに 取付けた場合を考えてみます。この場合、熱的には図6-8に示す等価回路に置き換えられます。

図6-8に示す等価回路より、接合温度(T_{vi})は次の熱方程式で求められます。

 $Tj = W \times \{Rth(j-c) + Rth(c-f) + Rth(f-a)\} + Ta$

ただしケース温度 T_c及びヒートシンク温度 T_fは図6-15に示す位置の温度を表しています。図6-9に示すように、 これ以外の点の温度は実際には低く測定され、かつヒートシンクの放熱性能に依存しますので設計時に 注意が必要です。

次にIGBTモジュールとダイオード・ブリッジ・モジュールをそれぞれ1個づつヒートシンク上に取付ける場合の 等価回路例を図6-10に示します。この場合の熱方程式は、

 $Tj(d) = Wd \times [Rth(j-c)d + Rth(c-f)d] + [(Wd + 2WT + 2WD) \times Rth(f-a)] + Ta$ $Tj(T) = WT \times Rth(j-c)T + [(WT + WD) \times Rth(c-f)T] + [(Wd + 2WT + 2WD) \times Rth(f-a)] + Ta$ $Tj(D) = WD \times Rth(j-c)D + [(WT + WD) \times Rth(c-f)T] + [(Wd + 2WT + 2WD) \times Rth(f-a)] + Ta$ Exo(strong to the strong t

図6-8 熱抵抗の等価回路

図6-9 ケース温度の測定例

図6-10 複数モジュールを取付けた場合の熱抵抗等価回路

5.2 過渡状態の熱方程式

ー般的には前述のように平均発生損失から定常状態のT_{vi}を考えれば充分ですが、実際にはスイッチングを 繰り返す毎に損失はパルス状に発生しますので図6-12に示すように温度リプルを生じます。この場合、発生 損失を一定周期かつ一定ピーク値の連続矩形波パルスと考えれば仕様書記載の過渡熱抵抗曲線(図6-11) を使用して温度リプルのピーク値(T_{vip})を近似的に計算することができます。

この T_{vip}も T_{vi}max.を越えないことを確認してヒートシンクを選定してください。

$$Tjp - T_{C} = P \times \left[R(\infty) \times \frac{t1}{t2} + \left(1 - \frac{t1}{t2}\right) \times R(t1 + t2) - R(t2) + R(t1) \right]$$

図6-11 過渡熱抵抗曲線

図6-12 温度リプル

6. IGBTモジュールの取付け方法

6.1 ヒートシンクへの取付け方法

熱抵抗はIGBTモジュールを取付ける位置により変化しますので、下記の点に注意して下さい。

- ◆ IGBTモジュール1個をヒートシンクに取付ける場合、ヒートシンクの中心に取付けると熱抵抗が最小と なります。
- ◆ 1つのヒートシンクに複数のIGBTモジュールを取付ける場合は、各IGBTモジュールが発生する損失を 考慮して、取付け位置を決定して下さい。大きな損失を発生するIGBTモジュールには、大きな占有面積を 与えるようにして下さい。

6.2 ヒートシンク表面の仕上げ

IGBTモジュールを取付けるヒートシンク面の仕上げは、ネジ取付け位置間で平坦度を100mmに対し50µm 以下、表面粗さは10µm以下にして下さい。ヒートシンク面が窪んでいる場合、接触熱抵抗(Rth(c-f))の増加を 招きます。またヒートシンク面の平坦度が上記範囲外の場合、IGBTモジュールを取付けた時(締付け時)IGBT モジュール内のチップと金属ベースの間にある絶縁基板にストレスが加わり、絶縁破壊を生じる恐れが あります。

6.3 サーマルグリース塗布

接触熱抵抗を小さくするために、ヒートシンクとIGBTモジュールの取付け面の間にサーマルグリースを 塗布して使用してください。

サーマルグリースの塗布方法についてはローラーでの塗布、ステンシルマスクを用いた塗布などがあります。 サーマルグリースはヒートシンクへの熱伝導を促進するものですが、それ自体熱容量をもっています。した がって、厚く塗布しすぎるとヒートシンクへの放熱を妨げることになりチップ温度の上昇を招きます。 ー方、サーマルグリースを薄く塗布した場合では、ヒートシンクとモジュール間でサーマルグリースの未接合 部分が生じて接触熱抵抗が上昇する可能性があります。したがって、サーマルグリースは適切な厚さで塗布 しなければなりません。サーマルグリースの塗布厚が不適切な場合、ヒートシンクへの放熱が悪くなり、 最悪の場合にはチップ温度がTyimaxを上回ることで破壊に至る可能性があります。

このような理由からサーマルグリースの塗布はモジュール裏面に均一な厚さでの塗布が可能なステンシル マスクによる塗布方法を推奨します。ステンシルマスクによるサーマルグリース塗布方法例の概略を図6-13 に示します。基本的な方法は、所定の重さのサーマルグリースをステンシルマスクによってIGBTモジュールの 金属ベース面に塗布する方法です。その後、サーマルグリースが塗布されたIGBTモジュールをヒートシンクに 各製品の推奨トルクでネジを締付けることによって、サーマルグリース厚を概ね均一にすることが可能と なります。なお富士電機が推奨するステンシルマスクのデザインは、お客様のご要望に応じ提供が可能です。

図6-13 サーマルグリース塗布方法例の概略図

ここで、サーマルグリース厚が均一と仮定した場合の必要な重さは次のように算出することができます。

サーマルグリース厚 (um) = サーマルグリース重量 (g) x 10⁴ モジュールのベース面積 (cm²) x サーマルグリースの密度 (g/cm³)

上記式から必要なサーマルグリース厚に対する重量を求めて、その重量のサーマルグリースをモジュール に塗布してください。ここでサーマルグリースが拡がった後の厚さ(サーマルグリース厚)は約100umを推奨 いたします。なおサーマルグリースの最適な塗布厚は使用するサーマルグリースの特性や塗布方法などに よって変わりますので確認して使用してください。

表6-1に推奨サーマルグリースの一例を示します。

型名	製造メーカ	
G747	信越化学工業㈱	
TG221	日本データマテリアル㈱	
SC102	デュポン・東レ・スペシャルティ・マテリアル㈱	
YG6260	モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社	
P12	旭化成ワッカーシリコーン(株)	
HTC	Electrolube	

表6-1 サーマルグリースの例
6.4 締付け方法

IGBTモジュール取付け時のネジの締付け方を図6-14に示します。なお、ネジは規定の締付けトルクで 締付けるようにして下さい。

規定トルクは仕様書に記載しておりますので参照してください。締付けトルクが不足すると、接触熱抵抗が 大きくなる、動作中に緩みが生じる恐れがあります。逆に締付けトルクが過大な場合はケースの破損等の 恐れがあります。

図6-14 IGBTモジュールの取付け方法

6.5 IGBTモジュールの取付け方向

押し出し型によって作られたヒートシンクにIGBTモジュールを取付ける場合、図6-14に示すようにヒート シンクの押し出し方向と平行に、IGBTモジュールを取付けるよう推奨します。これはヒートシンクが変形する 影響を少なくするためです。

6.6 温度の検証

ヒートシンクを選定し、IGBTモジュールの取付け位置を決めた後、各部の温度を測定しIGBTモジュールの 接合部温度(T_{vi})が定格あるいは設計値を越えないことを確認して下さい。 なお、ケース温度(T_c)の正確な測定方法例を図6-15に示します。

図6-15 ケース温度測定方法例

第7章 ゲート駆動回路設計方法

1. ゲート駆動条件と主要特性の関係	7-2
2. ゲート駆動電流について	7-5
3. デッドタイムの設定	7-6
4. ゲート駆動回路設計の具体例	7-8
5. ゲート駆動回路設計、実装上の注意事項	7-9

本章では、IGBTモジュールのゲート駆動回路設計手法について説明します。

1. ゲート駆動条件と主要特性の関係

表7-1にIGBTのゲート駆動条件と主要特性の一般的な関係を示します。IGBTの主要特性はV_{GE}、R_Gにより 変化するので装置の設計目標にあわせた設定が必要です。

主要特性	+ <i>V</i> _{GE} 増	- <i>V</i> GE増	R _{G(ON)} 増	R _{G(OFF)} 増
V _{CE(sat)}	減少	—	—	—
t _{on} E _{on}	減少	_	増加	_
$t_{ m off} \ {m {\cal E}}_{ m off}$	_	減少	_	増加
ターンオン サージ電圧	増加	_	減少	—
ターンオフ サージ電圧	-	増加	-	減少*1
dv/dt誤点弧	増加	減少	減少	減少
電流制限値	増加	_	_	_
短絡耐量	減少	_	_	—
放射ノイズ	増加	_	減少	減少

表7-1 IGBTのゲート駆動条件と主要特性

*1 シリーズによってサージ電圧のゲート抵抗依存性は異なります。

1.1 ゲート順バイアス電圧 :+ V_{GE}(オン期間)

ゲート順バイアス電圧+VGEの推奨値は+15Vです。以下に+VGEの設計時の留意事項を示します。

- (1) + V_{GE}はG-E間最大定格電圧20V以下で設計して下さい。
- (2) 電源電圧の変動は±10%以内を推奨します。
- (3) オン期間中のC-E間飽和電圧(V_{CE(sat})は+V_{GE}によって変化し、+V_{GE}が高い程低くなります。
- (4) ターンオンスイッチング時の時間や損失は+V_{GE}が高い程小さくなります。
- (5) ターンオン時(FWD逆回復時)の対向アームのサージ電圧は+V_{GE}が高い程発生しやすくなります。
- (6) IGBTがオフ期間中でもFWDの逆回復時のdv/dtにより誤動作し、パルス状の短絡電流が流れて過剰な 発熱や最悪の場合破壊を招く事があります。この現象はdv/dt誤点弧と呼ばれ、+V_{GE}が高い程発生し やすくなります。
- (8) 一般には+V_{GE}が高い程、制限電流値が高くなります。
- (9) 短絡耐量は+VGEが高い程小さくなります。

1.2 ゲート逆バイアス電圧:-VGE(オフ期間)

ゲート逆バイアス電圧-V_{GE}の推奨値は-5Vから-15Vです。以下に-V_{GE}の設計時の留意事項を示します。

- (1) V_{GE}はG-E間最大定格電圧20V以下で設計して下さい。
- (2) 電源電圧の変動は±10%以内を推奨します。
- (3) IGBTのターンオフ特性は-V_{GE}に依存し、特にコレクタ電流がオフし始める部分の特性は-V_{GE}に強く 依存します。従って、ターンオフスイッチング時の時間や損失は-V_{GE}が大きい程小さくなります。
- (4) dv/dt誤点弧は-V_{GE}が小さい場合に発生しますので、少なくとも-5V以上に設定して下さい。ゲートの 配線が長い場合には特に注意が必要です。

1.3 ゲート抵抗:R_G

ゲート抵抗R_Gの値は、仕様書ではスイッチング損失を小さくする際の数値を記載しています。したがって ゲート抵抗R_Gは回路構成や環境によって適切に変更する必要があります。以下に、R_G設計時の留意事項を 示します。

- (1) スイッチング特性はターンオン、ターンオフ共にR_g値に依存し、R_gが大きいほどスイッチング時間や スイッチング損失は大きくなります。これに対し、一般にはR_gが大きいほどスイッチング時のサージ電圧は 小さくなると言われていますが、デバイスの構造によりR_gが大きくなるとサージ電圧が増加する場合が あります。シリーズ別/耐圧別に技術資料を準備しています。詳細は技術資料を確認して下さい。
- (2) dv/dt誤点弧はR_gが大きい方が発生しにくくなります。
- (3) 各種スイッチング特性は回路構成上の寄生インダクタンスなどにより大きく変動します。特にターンオフ時に発生するサージ電圧、FWDの逆回復時に発生するサージ電圧は大きく影響しますので、回路の寄生インダクタンスを可能な限り小さくした状態で、Rgを設計してください。

以上の各種特性のゲート抵抗依存性に注意しながら最適なゲート駆動条件を選定してください。

7-3

1.4 FWD逆回復時のdv/dtによる誤点弧を回避するために

本節ではFWDの逆回復時に発生するdv/dtによって、IGBTのゲートが誤点弧することを回避する方法に ついて述べます。図7-1はdv/dt発生時に生じる誤点弧の原因について示した図です。本図ではIGBT1がオフ 状態からオン状態に遷移するものとし、IGBT2はゲートを逆バイアスにしているものとします。IGBT1がオフ 状態からオン状態になるとその対向アームのFWD、すなわちFWD2が逆回復します。また同時にオフ状態に あるIGBT2(FWD2)のコレクタ電位が上昇するため、IGBT1のターンオンに応じたdv/dtが発生します。IGBT1,2 にはそれぞれ帰還容量*C*_{res}があるため、*C*_{res}を介して電流I=*C*_{res} × dv/dtが流れます。

この電流がゲート抵抗 $R_{\rm G}$ に流れることより、 GーE間電圧 $V_{\rm GE}$ が上昇します。 $V_{\rm GE}$ がIGBT2の 逆バイアス電圧としきい値電圧 $V_{\rm GE(th)}$ の和の 電圧を越えるとIGBT2が誤点弧(オン)すること になり、IGBT1とIGBT2は短絡状態となります。 この原理から、誤点弧を回避するための方法を 図7-2に示します。IGBTの誤点弧回避方法と して、GーE間に容量成分 $C_{\rm GE}$ を付加し見かけ 上のゲート電荷量を増やす方法、 $-V_{\rm GE}$ を増やし てゲート電荷量を増やす方法、ゲート抵抗 $R_{\rm G}$ を 大きくしてdv/dtを下げる方法があります。

これらの対策による効果は適用ゲート回路に よって異なりますので、充分に確認して適用して

図7-1 dv/dt発生時の誤点弧の原理

ください。またスイッチング損失への影響もありますので、併せて確認をお願いします。

図7-2 dv/dt誤点弧回避方法

GーE間に容量成分*C*_{GE}を付加する方法は、誤点弧電流を*C*_{GE}にバイパスさせることによってゲート抵抗に 流れる電流を低減させる方法です。*C*_{GE}を付加することでゲート駆動時にこの容量成分を充電する必要がある ためスイッチングスピードが遅くなります。このため単に*C*_{GE}を付加した場合はスイッチング損失は大きくなり ます。しかし*C*_{GE}を付加した場合でもゲート抵抗を下げることでスイッチングスピードを適切にコントロールする ことができます。すなわち、*C*_{GE}を付加すると共にゲート抵抗を低減することで、スイッチング損失を増大 させることなく誤点弧を回避することが可能です。

なお*C*_{GE},*R*_Gの目安としては仕様書に記載の*C*_{ies}に対し2倍程度の容量をゲート抵抗*R*_Gのモジュール側へ 付加するとともに、ゲート抵抗*R*_Gは*C*_{GE}付加前に対し概ね半分に変更することを推奨します。詳細特性に ついては各シリーズのアプリケーションデータを参照してください。

2. ゲート駆動電流について

IGBTはMOSゲート構造を持っており、スイッチング時にこれを充放電するゲート電流(駆動電流)を流す 必要があります。図7-3にゲート電荷特性を示します。ゲート電荷特性はIGBTを駆動するのに必要な電荷量 を表しており、平均駆動電流や駆動電力の計算に使用できます。図7-4にゲート駆動回路の原理図と電圧 電流波形を示します。駆動回路の原理は順バイアス電源と逆バイアス電源をスイッチS1・S2にて交互に 切り換えるもので、切り換え時にゲートを充放電する電流が駆動電流であり、図7-4中の電流波形で表される 面積(斜線部分)が図7-3中の充放電電荷量と等しくなります。

図7-3 ゲート電荷量特性(ダイナミック入力特性)の概略波形

図7-4 駆動回路原理図及び電圧電流波形

駆動電流の尖頭値1。は次の近似式で求められます。

$$I_{GP} = \frac{+V_{GE} + \left| -V_{GE} \right|}{R_G + r_\sigma}$$

+V_{GF}: 順バイアス電源電圧

-*V*_{GF}: 逆バイアス電源電圧

R_c: 駆動回路のゲート抵抗

*r*g: モジュール内部のゲート抵抗

なお内蔵抵抗rgは各型式によって異なりますので、各仕様書を参照ください。

一方駆動電流の平均値I_cは図7-3に示したゲート電荷量特性を用いて次式にて計算できます。

$$+I_{g} = -I_{g} = fc \times \left(+Q_{g} \right) + \left| -Q_{g} \right|$$

f。:キャリア周波数

+Q_G:0Vから+V_{GE}までの電荷量

-*Q*_G:-V_{GE}から0Vまでの電荷量

したがって、駆動回路の出力段にはこれらの近似式で計算した電流I_{GP}、及び±I_Gを流せるように設計する 必要があります。また、駆動回路の発生損失をすべてゲート抵抗で全て消費するとすれば、IGBTを駆動する ために必要な駆動電力Pdは次式で表されます。

$$Pd(on) = fc \bullet \left[\frac{1}{2} \left(\left| + Q_g \right| + \left| - Q_g \right| \right) \bullet \left(\left| + V_{GE} \right| + \left| - V_{GE} \right| \right) \right]$$

$$Pd(off) = Pd(on)$$

$$Pd = Pd(off) + Pd(on)$$

$$= fc \bullet \left(\left| + Q_g \right| + \left| - Q_g \right| \right) \bullet \left(\left| + V_{GE} \right| + \left| - V_{GE} \right| \right)$$

したがって、ゲート抵抗にはこの近似式で計算した発生損失を許容できるものを選定する必要があります。 以上に述べたような駆動電流、駆動電力を供給できるように駆動回路を設計してください。

3. デッドタイムの設定

インバータ回路などでは上下アームの短絡防止のため、オン・オフの切り換えタイミングにデッドタイムを 設定する必要があります。図7-5に示すようにデッドタイム中は上下アームとも「オフ」の状態となります。 デッドタイムは基本的にIGBTのスイッチング時間(*t*off max.)より長く設定する必要があります。例えば*R*gを 大きくするとスイッチング時間も長くなるのでデッドタイムも長くする必要があります。さらに他の駆動条件 や温度特性等も考慮する必要があります。デッドタイムが短い場合、上下アーム短絡が発生して短絡電流に よる発熱で素子破壊に至る可能性がありますので注意が必要です。IGBTモジュールのデッドタイムは3 μ sec 以上を推奨いたしますが、実際の適用に際しては実機にて充分な確認の上、デッドタイムの設定をお願い いたします。 デッドタイムの設定が良いかどうかを判定するひとつの方法として、無負荷時の直流電源ラインの電流を 確認することがあげられます。

図7-6に示す3相インバータの場合、インバータの出力(U,V,W)をオープン状態にして通常の入力信号を 与えDCラインの電流を測定します。デッドタイムが充分であっても微小なパルス状電流(素子の出力容量を 抜けてくるdv/dt電流:通常は定格電流の5%程度)が流れますが、デッドタイムが不足していればこれより 大きな短絡電流が流れます。この場合、短絡電流が無くなるまでデッドタイムを長くしてください。高温ほど ターンオフ時間が長くなることから、この試験は高温状態で実施を推奨します。また、逆バイアス電圧- V_{GE} が 不足しても、短絡電流が増加します。デッドタイムを増加しても短絡電流が減少しないときには、逆バイアス 電圧- V_{GE} を増加願います。逆バイアス電圧としては、- $V_{GE} \ge 5V$ を推奨します。

図7-5 デッドタイム タイミングチャート

図7-6 デッドタイム不足による短絡電流の検出方法

4. ゲート駆動回路設計の具体例

インバータ回路等ではIGBTと制御回路間を 電気的に絶縁する必要があります。このような 用途に用いられる高速フォトカプラを使用した 駆動回路の例を図7-7に示します。フォト カプラを使用することにより入力信号と素子を 電気的に絶縁します。またフォトカプラは出力 パルス幅に対する制約がないので、PWM制御 のようにパルス幅が広範囲に変化する用途に 適しており、現在では最も広く使用されて います。

また、ゲート抵抗を二つ設けてターンオンと ターンオフの特性を別々に設定することもでき ます。

このほか、信号絶縁にパルストランスを用いる ゲート駆動方法があります。この方法は信号と

図7-7 高速フォトカプラを用いた駆動回路例

ゲート駆動電力の両方を信号側から同時に供給できるため回路の簡略化が可能です。しかし、オン デューティ比が最大50%,逆バイアスを設定できない、といった制約があります。

最近の傾向として、パルストランスをオン/オフの切り替えタイミングに使用するゲートドライブユニット(GDU) が各社より発売されています。詳細は各GDU製造メーカーのホームページを参照ください。

7-8

5. ゲート駆動回路設計、実装上の注意事項

5.1 フォトカプラのノイズ耐量について

IGBTは高速スイッチング素子であるため、ゲート駆動回路に使用するフォトカプラはノイズ耐量の大きい ものを選定する必要があります(例:HCPL4504)。また、誤動作を避けるためフォトカプラの一次側と二次側の 配線を交差させないようにして下さい。このほか、IGBTの高速スイッチング性能を活かすには信号伝達遅れ 時間の短いフォトカプラを使用することを推奨します。

5.2 ゲート駆動回路とIGBT間の配線について ゲート駆動回路とIGBTの間の配線が長い 場合、ゲート信号の振動や誘導ノイズによって IGBTが誤動作する可能性があります。 この対策として図7-8に示す方法があります。

(1) ゲート駆動配線を極力短くし、ゲート配線と エミッタ配線を密に撚り合わせる

(ツイスト配線)。

(2) *R*_gを大きくする。ただしスイッチング時間 スイッチング損失に注意すること。

図7-8 ゲート駆動回路の実装上の注意

- (3) ゲート配線とIGBTの主回路配線は出来る限り遠ざけ、重ねる場合は互いに直交する(相互誘導を受け ない)ようにレイアウトする。
- (4) 他相のゲート配線と一緒に束ねたりしないこと。
- *1 *R*_{GE}について

ゲート駆動回路の不具合あるいはゲート駆動回路が完全に動作していない状態(ゲートがオープン状態)*2 にて主回路に電圧を印加するとIGBTが破壊することがあります。この破壊を防ぐため、G-E間に10kΩ程度の 抵抗*R*_{GE}を接続することを推奨します。

*2電源投入について

電源投入にはまずゲート駆動回路電源を投入して完全に動作させた後、主回路電源を投入してください。

5.3 ゲート過電圧保護について

IGBTは他のMOS型素子と同様に充分に静電対策を 実施した環境下で取り扱う必要があります。またG-E間 最大定格電圧は±20Vなので、これ以上の電圧を印加 する可能性がある場合には、図7-9に示すようにG-E間に ツェナーダイオードやTVSダイオードを接続するなどの 保護対策が必要となります。

図7-9 G-E間過電圧保護回路例

第8章 IGBTモジュールの並列接続

1. 定常時に電流アンバランス	8-2
2. スイッチング時の電流アンバランス	8-6
- 3. ゲート駆動回路	8-7
	8-8

IGBTモジュールを変換回路に適用する際、通電電流能力を増やす目的としてIGBTモジュールを並列接続 して使用する場合があります。IGBTモジュールの並列数は特に制限がありませんが、装置の大きさに伴って 配線長が長くなるリスク(ノイズやサージ電圧の増加)を考慮する必要があります。 IGBTを並列接続する場合の基本的な留意点は以下の3つです。

1) 定常時の電流アンバランス抑制

2)スイッチング時の電流アンバランス抑制

3)ゲート駆動回路

本章ではIGBTモジュールを並列接続する際の留意点について記載します。

1. 定常時の電流アンバランス

IGBTが導通(オン)時における電流アンバランスの要因は、主に次の2つが挙げられます。

- V_{CE(sat)}のバラツキ
- 主回路配線抵抗のバラツキ

1.1 V_{CE(sat)}のバラツキによる電流アンバランスの発生

並列接続するIGBTのV_{CE(sat})のバラツキによって、出力特性に差が生じます。これにより導通時の定常状態において、電流アンバランスが発生します。図8-1に異なるV_{CE(sat})を持つIGBTの出力特性を示します。 なお、図8-1では2並列を例として図示しています。図8-1においてQ₁とQ₂の出力特性は以下の式で近似できます。

$$V_{CEQ1} = V_{01} + r_1 \times I_{C1}$$

$$r_1 = V_1 / (I_{C1} - I_{C2})$$

$$V_{CEQ2} = V_{02} + r_2 \times I_{C2}$$

$$r_2 = V_2 / (I_{C1} - I_{C2})$$

したがって $Q_1 \ge Q_2$ を並列接続した 回路に I_{Ctotal} (= I_{C1} + I_{C2})のコレクタ電流を 流した場合、 $Q_1 \ge Q_2$ の電圧が同一に なる必要があることから、それぞれに 流れるIGBTのコレクタ電流は以下の ように求めることができます。

$I_{C1} = (V_0$	$_{2} - V_{01} +$	$r_2 \times I_{Ctot}$	$(r_1 + r_2)/(r_1 + r_2)$
$I_{C2} = (V_0$	$_{1} - V_{02} +$	$r_1 \times I_{Ctot}$	$(r_1 + r_2)/(r_1 + r_2)$

図8-1 異なる出力特性の組み合わせ例

前述式において $V_{01}=V_{02}$ を仮定した場合、 Q_1 には、 Q_2 に流れる電流の r_2/r_1 倍の電流が流れることになります。 図8-1からわかるように $r_2 > r_1$ であることから、Q1の電流分担が大きくなります。このように $V_{CE(sat)}$ のバラツキ がある場合には低 $V_{CE(sat)}$ のIGBTの電流分担が大きくなります。したがって、良好な電流分担を得るためには $V_{CE(sat)}$ のバラツキの少ない素子を組み合わせる必要があります。 $V_{CE(sat)}$ バラツキは同一製品ロットのIGBT モジュールを用いることにより最小にすることができます。これは様々なプロセス要因から生じる影響を最小 にできるためです。したがって並列接続を行なう場合、同一製品ロットで並列接続することを推奨いたします。

1.2 主回路配線の抵抗分バラツキに起因した電流アンバランスの発生

図8-2に2並列接続時の主回路配線に抵抗成分がある 場合の等価回路図を示します。主回路配線の抵抗成分の 影響は、コレクタ側と比較してエミッタ側の方が大きいため、 図8-2ではコレクタ側の抵抗成分を省略して記載しています。 図8-2に示すようなエミッタ側の主回路配線に抵抗成分が ある場合、IGBTの出力特性の傾きが等価的に緩やかに なるため、抵抗成分がない場合と比べ同じ V_{CE} に対する コレクタ電流は減少します。また抵抗成分が大きい程、 出力特性の傾きが緩やかになるので、コレクタ電流は小さく なります。図8-2でR_{E1}>R_{E2}を仮定した場合、 $L_1 < L_2$ となり、 電流アンバランスが生じます。また、抵抗成分(R_{E1},R_{E2})に コレクタ電流が流れることによって生じる電位差が実際の G-E間電圧を小さくさせます(V_{GE} =V-V_E)。これに よりIGBTの出力特性が変化してコレクタ電流は減少します。

図8-2 主回路配線に抵抗成分が ある場合の等価回路図

このようにエミッタ側の抵抗成分によって、IGBTへの正味のG-E間電圧が小さくなることや電流アンバランスが生じるなどの影響があります。したがってこの影響を低減するためには、エミッタ側の配線は極力短くかつ 均等にする必要があります。

1.3 出力特性の接合温度依存性と電流アンバランス

出力特性の温度特性はその挙動によって電流アン バランスに大きな影響を与えます。ここでV_{CE(sat})が 接合温度上昇とともに高くなる場合を正の温度特性、 逆に低くなる場合を負の温度特性と定義します。 図8-3に正と負の温度特性を有する100A定格IGBTの 代表的な出力特性を示します。出力特性の温度特性が 正の場合、接合温度が上昇するにつれて、コレクタ電流 は減少することになります。

本章1.1で述べたように並列接続時にはV_{CE(sat)}の低い IGBTの電流分担が増えます。これにより定常損失は V_{CE(sat)}の低いIGBTが大きくなり、接合温度はもう一方 よりも上昇することになります。

図8-3 出力特性比較

正の温度特性を有するIGBTの組み合わせでは、温度上昇によってV_{CE(sat)}の高いIGBTとバランスしあう方向 に作用します。反対に負の温度特性を有するIGBTの組み合わせでは、温度上昇に伴い片方のIGBTに電流 が集中し電流アンバランスを増長する動作となるため、並列運転する際、電流分担に留意して設計を行なう 必要があります。出力特性が正の温度特性を有するIGBTは、負の特性を有するIGBTよりも並列運転が比較 的容易であるため、並列接続時には出力特性の温度特性が正のIGBTを選定することを推奨いたします。 なお、第四世代Sシリーズ以降のIGBTモジュールは出力特性の温度特性は正となっています。出力特性の 温度特性詳細についてはIGBTモジュールの仕様書にて確認をお願いいたします。

1.4 V_{CE(sat)}のバラツキと電流アンバランス率

IGBTの並列接続時に生じる電流分担の割合は 電流アンバランス率と呼ばれ、IGBT自身のV_{CE(sat})の バラツキや出力特性の接合温度特性によって 決定されます。

図8-4に代表的な $V_{CE(sat)}$ のバラツキと電流アン バランス率の関係を示します。同図はVシリーズ IGBTの2並列接続時における電流アンバランス 率です。図8-4からわかるように $V_{CE(sat)}$ のバラツキが 大きくなると電流アンバランス率が大きくなります。 それゆえ並列接続をする際には $V_{CE(sat)}$ の差($\Delta V_{CE(sat)}$) が小さい製品を組み合わせることが重要となります。

図8-4 V_{CE(sat)}のバラツキと電流アンバランス率

1.5 多並列接続時のディレーティング

IGBTの並列接続時には電流アンバランスを考慮する必要があり、その電流総和(流すことができる最大 電流)には定格電流の総和に対するディレーティング(電流低減)が必要となります。n個の素子を並列接続 する場合、最も $V_{CE(sat)}$ が低い1素子への電流集中が最悪条件と考えます。n個の素子を並列接続した場合の 許容最大電流 Σ /は、2並列時の電流アンバランス率 α を用いて以下の式で表すことができます。

$$\sum I = I_{C(\text{max})} \left| 1 + (n-1) \frac{\left(1 - \frac{\alpha}{100}\right)}{\left(1 + \frac{\alpha}{100}\right)} \right| \qquad \alpha = \left(\frac{I_{C1}}{I_{C(ave)}} - 1\right) \times 100$$

ここで上式の電流アンバランス率 α は図8-1に示した2並列時の電流値 L_{1} と平均電流値 $L_{C(ave)} = (L_{1}+L_{2})/2$ により求められます。また $L_{C(max)}$ は1素子当りの最大電流、 Σ /は並列接続時の最大電流を表しています。 Σ /を駆動するためには並列接続した全ての素子が仕様書に記載のRBSOAを満足する必要があるとともに、発生損失によって生じる接合温度の上昇を $T_{vj(max)}$ 以下にする必要があります。特に発生損失による接合温度の上昇は使用条件(スイッチング周波数,ゲート駆動条件,放熱条件,スナバ条件等)により異なるので注意が必要です。たとえば α =15%, $L_{C(max)}$ =200A,n=4の場合では Σ E643.4となり単純に200×4=800Aとはならず19.6%のディレーティングが必要であることがわかります。このように並列時の全電流 Σ Iは単純な電流総和 (n x $L_{C(max)}$)に対してディレーティングが必要となります。

電流アンバランス率α=15%とした場合のIGBTのディレーティング率を図8-5に示します。この図からわかる ように、並列数の増加とともにディレーティング率が大きくなっています。したがって並列接続を行なう際、接続 数に応じたディレーティングを行なってください。またディレーティング率は電流アンバランス率によって異なり ますので、注意してください。

本例に示すディレーティング率は前記の電流アンバランス率から求めた参考値のため、実機動作によって アンバランス確認と検証を行なった上でディレーティング率を決定してください。

故障、保守などにより並列接続したモジュールの交換が必要となった場合は、並列接続している全モジュー ルの交換を推奨いたします。また交換する際、前述のように同一製品ロットで並列接続することを推奨いたし ます。

図8-5 並列接続数とディレーティング率の関係

2. スイッチング時の電流アンバランス

スイッチング時における電流アンバランスの要因としては、主に次の2つが挙げられます。

- 素子特性のバラツキ
- 主回路配線インダクタンスのバラツキ

2.1 素子特性のバラツキ

IGBTのスイッチング時、特にターンオフ直前の電流アンバランスはオン状態の電流アンバランスでほぼ 決まると考えられます。前章で述べたように、オン状態の電流アンバランスを抑えることにより、スイッチング 時の電流アンバランスも同時に抑えられます。

主回路配線インダクタンスのバラツキ

主回路配線のインダクタンスが不均等の場合、並列接続 した素子のスイッチング時の電流分担にアンバランスが 生じます。図8-6に主回路配線インダクタンスを考慮した 並列接続時の簡易等価回路を示します。IGBT1,2に 流れるオン電流をそれぞれ」なとしたとき、電流分担は 各IGBTの配線インダクタンスLc1+LE1とLc2+LE2の差に 影響を受け、ほぼインダクタンス比によって決まります。 したがってスイッチング時の電流アンバランスを緩和する ためには配線インダクタンスをできる限り均等にすることが 必要です。しかし、 $L_{c1}+L_{E1}=L_{c2}+L_{E2}$ という理想的な配線 インダクタンスを実現したとしても、Le1とLe2の配線 インダクタンスが不均一な場合、スイッチング時の 電流変化率(di/dt)の違いによって発生する誘起電圧に 差が生じます。誘起電圧の差は 並列接続した各IGBTの 実効的に印加されるゲート電圧に影響を与え、 電流アンバランスを助長します。

このことから、素子の並列接続を行なう際、可能な限り L_{c1}=L_{c2},L_{E1}=L_{E2}となる配線として、対称性を確保した配線と 図0-0 王回路記線129792スを 考慮した並列接続時の簡易等価回路

する事が非常に重要となります。また、主回路配線インダクタンスが大きいとIGBTターンオフ時のサージ電圧 が大きくなるため、配線インダクタンスはできる限り小さくする必要があります。並列接続するIGBTモジュール は可能な限り密着させて配置し、配線は可能な限り均等化して下さい。

IGBTモジュールに補助エミッタ端子がある場合、エミッタ側主回路インダクタンスの影響を小さくするために、 補助エミッタ端子を用いてゲートを駆動することを推奨いたします。

3. ゲート駆動回路

各IGBTを異なるゲート駆動回路(GDU)で駆動 した場合、回路の遅れ時間などのバラツキに よってスイッチングタイミングにバラツキを生じる ことが懸念されます。したがってIGBTモジュール を並列接続する場合、IGBTのゲート駆動回路は IGBTモジュールの並列数に関係なく1台で構成 することを推奨いたします。このように構成する ことでゲート駆動回路に起因したスイッチングの バラツキを低減でき、IGBT並列動作時の悪影響 を減らすことが可能となります。ただし並列接続 したモジュールの各IGBTのゲートを同一の回路 で駆動する場合、駆動能力不足によるスイッチング スピードの低下,ゲート制御ができないなどが懸念

図8-7 ゲート駆動回路の配線

されるため、ゲート駆動回路は並列数に応じた適切な容量を選定してください。

またゲート駆動回路を1台で構成する場合、配線インダクタンスとIGBTの入力容量により、ゲート電圧の 立ち上がり時に寄生振動を起こす場合がありますので、各IGBTのゲート抵抗はそれぞれのゲートへ個別に 接続して下さい(図8-7参照)。さらにこの振動抑制のためにエミッタ配線に抵抗を入れる場合がありますが、 その抵抗によって生じる電圧降下により素子の誤動作を引き起こす可能性がありますので、充分に検証 して適用してください。ゲート駆動回路のエミッタ配線が主回路配線の異なった位置に接続した場合には、 図8-6に示したL_{E1}とL_{E2}が不均衡となるため、並列接続された素子の過渡的な電流分担がアンバランスに なります。通常、2in1などのIGBTモジュールにはゲート駆動回路用に補助エミッタ端子を設けており、 素子内部のゲート配線は均等となります。したがってこの端子を使用してゲートを駆動すれば、素子 内部での過渡的な電流アンバランスを抑制することができます。このような理由から、IGBTモジュールに 補助エミッタ端子がある場合にはその端子を用いてゲートを駆動することを推奨いたします。

しかしながら補助エミッタ端子を用いてゲートを駆動した場合でもゲート駆動回路から各モジュールまでの エミッタ配線が長く、不均一になれば電流アンバランスを引き起こします。それゆえ並列接続した各モジュール へのゲート駆動回路の配線は均等な長さで最短となるように行なってください。このときゲート駆動回路の 配線は密に撚り合わせると共に、主回路配線からはできるだけ遠ざけ、相互誘導(特にコレクタ電流)を受け ないように配置して下さい。

4. 並列接続時の配線例

これまで述べてきたように、IGBTモジュールを並列接続して使用する場合、充分な注意が必要です。 図8-8に大容量2in1素子を並列接続で構成した時の等価回路を示します。図8-8からわかるように、並列 接続しているIGBT(IGBT1とIGBT2)への各種配線はIGBTに対しすべて対称に配線しています。

1700V/1000Aの大容量2in1素子を2並列で均等配線接続した場合のスイッチング波形を図8-9に示します。 この波形からわかるように、各IGBTに流れる電流 4.1.62ともにほぼ均等に流れており、電流アンバランス率は わずか2%です。このように並列接続時に対称配線構成とすることで、非常に良好な電流分担が実現できます。

図8-8 大容量2in1素子で構成した並列接続時の等価回路

図8-9 1000A/1700V 大容量2in1素子(2MBI1000VXB-170-50)の2並列時の波形

第9章 評価·測定方法

1. 適用範囲	9-2
2. 評価·測定方法	9-2

本章では、IGBTモジュールの特性評価方法および電圧、電流の測定方法について説明します。

1. 適用範囲

本章では、スイッチング周波数:数kHz~20kHz、装置容量:数百VA以上のパワーエレクトロニクス製品に 適用されるIGBTモジュールの特性評価方法および電圧、電流などの測定方法について説明します。

2. 評価·測定方法

2.1 評価・測定方法の概要

パワーエレクトロニクス応用装置の開発、或いは試験段階では、実際に装置に組み込まれた状態で電力用 半導体素子の特性評価や素子責務の測定などを行なう必要があります。 評価項目と測定方法の概要を表9-1に示します

No.	評価項目	測定項目	測 定 方 法	測 定 器 例
1	絶縁耐圧		素子の電極部を予め短絡し、導電部と装置の フレーム間に電圧を印加します。	耐圧試験器
2	素子の耐圧	電 圧	G-E間を短絡してC-E間に電圧を印加します。 ※印加電圧が回路に接続した機器の定格を こえる可能性がある場合はこれらを開放して から行ないます。	カーブトレーサ
3	飽和電圧		動作時の飽和電圧の測定はC-E間に電圧 クリップ回路を接続し、オシロスコープ内蔵 アンプが飽和しないようにして測定します。 ※静的な特性はカーブトレーサ又は パルスh _{FE} メータで測定します。	オシロスコープ
4	ターンオフ時の サージ電圧	電圧	コレクタ・エミッタ共に素子の端子間の電圧を 直接測定します。	オシロスコープ
5	スイッチング時間	電 圧 電	各々スイッチング時間の定義に従い、所要の 電圧、電流波形を測定します。	オシロスコープ 電流プローブ
6	電流分担 (並列使用の場合)	電 流	治具および計測用変流器を用いて個々の 素子に流れる電流を測定します。	オシロスコープ 電流プローブ
7	スイッチング損失	電症	スイッチング時に素子に流れる電流と素子の 端子間電圧との瞬時値の積から電力を 得ます。これを所定の期間積分して、スイッチ ング1回当りの発生損失を求ます。 (1) 電圧・電流波形を基に計算で求めます。 (2) 演算機能付測定器を使う方法もあります。	オシロスコープ
8	動作軌跡		スイッチング時に素子に流れる電流と素子の 端子間電圧を電流ー電圧平面上にプロット して得ます。	X-Y表示機能付 オシロスコープ
9	ケース温度		IGBT下の銅ベースの温度を測定します。 ※一般に銅ベース温度とは第6章の 図6-7で示したA点の値です。	熱電対温度計
10	接合部温度	温 度	IGBT(例えば飽和電圧)の温度特性に着目し、 予め、接合部温度と素子特性の校正カーブ を作成し、実際に動作中の素子特性を 測定して接合部温度を推定します。 ※直接接合部温度を測定する方法として、 サーモビューアを用いた方法があります。	サーモビューア

表9-1 評価項目と測定方法の概要

2.2 電圧の測定

IGBT動作時の電圧測定は、大振幅の高速スイッチング動作に起因するノイズの影響を受け易いので注意を必要とします。

(1) 測定器と校正

対象とする電圧は値と共にその波形も重要です。通常、測定器はオシロスコープを使用し、電圧測定には 電圧プローブを用います。オシロスコープとプローブの組合せが変わるとプローブ/オシロスコープの電圧 分割素子RCの時定数が変動します。このためプローブを使用する前には必ず、オシロスコープの校正端子に プローブを接続して全周波数帯域で減衰が一様になるようにプローブ補正を行なう必要があります。

適切な感度に設定(一般に表示面3~4div振幅)し、入力結合をDCにして行ないます。プローブの調整用 容量とオシロスコープの入力容量が適合しないと調整がとれませんのでプローブ選択には注意が必要です。 なお、オシロスコープおよびプローブの選定方法については2-5,2-6項を参照してください。

(2) 飽和電圧の測定

ー般にIGBTを使用する回路の電圧 は数百Vと高いのに比べ、飽和電圧は 数V程度と低い値となります。一方、 オシロスコープの画面の大きさは有限 であり、飽和電圧を精度良く読み取ろう として電圧感度を上げると、オシロ スコープ内部の増幅器が飽和するなど の影響で、実際の波形と異なった波形 が画面に現れます。したがってスイッチ ング動作中のIGBT飽和電圧は素子の C-E間電圧を直接オシロスコープで 測定する方法では得られません。

そこで、飽和電圧を測定する方法として、

図9-1 動作時の飽和電圧の測定方法

たとえば図9-1に示す電圧クリップ回路を付加して測定する方法があります。図9-1においてツェナーダイ オードZDはIGBTがオフ時の高電圧を制限するためのもので、通常ツェナー電圧が10V以下のものを使用し ます。Rは電流制限用抵抗であり、IGBTがオフ時には回路電圧のほとんどがこの抵抗に加わるため、比較的 大容量の抵抗器が必要となります。ダイオードDはツェナーダイオードZDの接合容量に蓄えられた電荷の 放電を防止し、接合容量と電流制限抵抗によるRCフィルタ形成を防いでいます。

(3) サージ電圧の測定(C-E間電圧の測定)

IGBTはスイッチングスピードが速いという利点がある一方、ターンオフ時の電流変化率di/dtが大きく、応用 装置の主回路配線インダクタンスLsに誘起する電圧も大きな値となり、直流回路電圧に重畳され、スパイク状 の電圧となって素子に加わります。この電圧はサージ電圧と呼ばれ、その電圧が素子の最大定格に対し、 所定の電圧余裕を持った値となっていることを確認する必要があります。

サージ電圧は素子の端子間電圧をオシロスコープで測定し、画面の表示値を直読して得られますが、測定 に際し、以下の注意が必要です。

i) 十分な周波数帯域を持ったプローブおよびオシロスコープを使用する。

ii)オシロスコープの感度調整、プローブの周波数補正を事前に行なう。

iii)測定用プローブは素子の端子に直接接続する。

図9-2 サージ電圧測定回路(例)

図9-2に示す回路でIGBTターンオフ時のサージ電圧を測定する場合、回路各部のインダクタンスには図示の極性の電圧が誘起します。今、サージ電圧を測定しようとして V_{CE} ではなく V_{CA} を測定した場合は、実際の V_{CE} よりも-L・di/dtだけ低い誤った電圧を測定することになります。したがって、IGBTのサージ電圧を測定する場合、モジュール端子に直接電圧プローブを接続するなど、配線インダクタンスLの影響を極力小さくした状態で測定する必要があります。

iv) プローブの測定用リードは最短とする。

v)ノイズの混入に注意する。

電圧プローブを被測定回路に接続した場合、オシロスコープの基準電位はスイッチング回路と同電位になり ます。スイッチング回路の対地電位変動が大きいと、オシロスコープの電源ラインを介してコモンモードの電流 が流れ、オシロスコープ内部の回路に誤動作を引き起こすおそれがあります。

ノイズの混入の有無を確認する方法としては、以下が挙げられます。

- ① 測定波形が物理的に説明がつけられるか否かを検討する。
- ② ノイズの影響を受け難い、バッテリー電源タイプのオシロスコープで測定した波形と比較する。

(4) ゲート電圧の測定(G-E間電圧の測定)

G-E間電圧はサージ電圧と同様にオシロスコープで直接測定可能です。しかしIGBTのゲートは容量性負荷 であり、電圧プローブも容量性のインピーダンスがあることから、動作時に電圧プローブを着脱して測定しない で下さい。また、測定に際してはサージ電圧測定と同様の注意が必要です。

2.3 電流の測定

電流の測定には電流プローブを用いますが、実際の装置では配線インダクタンスの低減や装置構造を 簡略化するため、装置の主回路はコンパクトにまとめられています。このため、素子の電流を測定するには 配線を延長しなければなりません。この影響をできるだけ小さくするため、変流器を用いて延長配線の最短化 を図ります。また電流プローブの測定能力にも限界があることから変流器の使用が必要となります。

電流プローブは導電部と絶縁を保っての電流測定が可能ですが、信号レベルが小さいこと、電磁誘導を利用 した検出器のため誘導によるノイズを受け易いことなどから、ノイズが混入しないよう注意願います。

(1) 測定器

電流検出器の例を表9-2に示します。

No.	品名	型式	メーカー	備考
1	DC電流プローブ	A6302型		回路電圧最大値:500V DC~50MHzで20Aまで ピークパルス電流50Aまで
2	専用増幅器、電源要	A6303型		回路電圧最大値:700V DC~15MHzで100Aまで ピークパルス電流500Aまで
3	∧○●汝プロゴ	P6021型	7950-92	回路電圧最大値:600V 120Hz~60MHz 15Ap-p ピークパルス電流250A
4	- AC電流フローフ P6022型		回路電圧最大値:600V 935Hz~120MHz 6Ap-p ピークパルス電流100A	
5	ACCT	様々有り	ピアソン	~35MHz
6	ロゴスキーコイル式 電流波形測定器 (電流プローブ)	CWT型	PEM	測定電流範囲:300mA~300kA 周波数範囲:0.1Hz~16MHz

表9-2 電流検出器の例

(2) 電流プローブの感度の確認

測定に先立ち、プローブの感度を確認しておく必要があります。

電流プローブの校正はオシロスコープの校正出力を使用して行なうか、または図9-3に示すような発信器を 用いて行なう方法があります。図9-3の方法は既知の抵抗R(無誘導)を使用してRの両端電圧eを測定し、 電流iを求めます。電流iと電流プローブの波形を比較し電流プローブの校正をします。電流iが小さい場合は 電流プローブの一次巻数を増やすことで感度を上げられます

図9-3 電流プローブの校正方法

(3) 電流の測定方法

2素子並列接続を例に、素子電流を測定する時の変流器CTの挿入位置と、電流の測定方法を図9-4に示します。正極側T₁₁の電流を測定する場合、CT₁の2次側電流を電流プローブで測定します。また、T₁₂の電流 はCT₂の2次側電流を電流プローブで測定します。正極側アームの電流(T₁₁の電流とT₁₂の電流の和)は、 CT₁,CT₂の2次側電流の向きを合わせてから一括して測定することで、同じ電流プローブで測定できます。 電流プローブおよび変流器の適用については2-6,2-7項を参照してください。

図9-4 CTの挿入位置と電流測定方法

2.4 スイッチング損失の測定

スイッチング損失はスイッチング開始時点からスイッチング動作が終了し定常状態になるまでの期間の発生 損失を表します。たとえばターンオン損失はG-E間電圧が0Vを横切ってからC-E間電圧が飽和電圧に到達 するまでの間IGBTに発生する損失です。

スイッチング損失は通常、スイッチング1回当りの発生エネルギーで表します。

図9-5にスイッチング動作波形とスイッチング損失の例を示します。スイッチング損失を測定するには、まず 電流・電圧波形を正しく測定しなければなりません。個々の測定方法については前述の通りですが、電流と 電圧を同時に測定しようとすると、電圧プローブ側から流入するコモンモード電流によって、電流波形に歪み を生じることがありますので注意が必要です。影響の有無は、電圧プローブ接続前後で電流波形に歪みが 生じるか否かで判断できます。電流波形に歪みを生じる場合、図9-6に示すように電圧プローブのケーブル およびオシロスコープの電源ケーブルにコモンモードチョークを挿入(高周波特性の優れたコアにケーブルを 巻きつける)すれば、波形の歪みは軽減されます。

この他、基準となる0V,0Aの設定も重要です。特にAC電流プローブを使用する場合は測定電流の値や 通流率によって0Aの位置が変化しますので注意が必要です。

図9-5 スイッチング損失

図9-6 コモンモードチョークの挿入方法

2.5 オシロスコープの選択

オシロスコープには様々な機能,性能のものがあり、測定項目や測定対象とする信号変化の速さによって、 適切なものを使い分ける必要があります。本項では信号源の立上り時間と使用するオシロスコープの所要 周波数帯域について概説します。

(1) パルス波形の立上り時間と周波数帯域の関係

パルス波形の立上り時間は図9-7に示すように電圧が10%から90%まで変化するに要する時間で定義 されます。

図9-7 パルス波形の立上り時間の定義

立上り時間 Trが-3dBとなる周波数をF.3dBとすると、これらの間には次の関係があります。

 $T_r \times F_{-3dB} \approx 0.35 \cdots (1)$

(2) 信号源の立上り時間 Truとオシロスコープの選択

事際の測定系における各部の立上り時間は図9-8で表されます。

図9-8 測定系と各部の立上り時間

オシロスコープのブラウン管面上に表示される波形の立上り時間 T_{ro}は各部の立上り時間によって決まり、 次式で与えられます。

$$\varepsilon = \frac{T_{r0} - T_{r1}}{T_{r1}} \times 100 \,(\%), \quad k = \frac{T_{r2} + T_{r3}}{T_{r1}}$$

として、(2)式を用いて ε とkの関係を求めると表9-3のようになります。

<i>E</i> (%)	1	2	3
К	7	5	4

表9-3 波形の測定誤差と信号源および測定器の立上り時間比率

これより、例えば立上り時間が3.5nsecの信号を3%の精度で測定するには、プローブとオシロスコープの 立上り時間の合計は信号源の立上り時間の1/4(3.5/4=0.87nsec)以下でなければなりません。プローブの 立上り時間を無視した場合、(1)式からオシロスコープの所要周波数帯域は0.35/0.87×10-9≒4×10⁸ すなわち400MHzとなります。したがって、オシロスコープは400MHz以上の周波数帯域を持つものを使用 しなければなりません。

以上のように、信号の立上り時間の長短によって、使用するオシロスコープを選択しなければならない ことがわかります。

2.6 プローブの選択

プローブは前述の通り、電圧プローブと電流プローブがあります。 本項ではこれらプローブを選択するための基本的な事項と、使用上の注意について説明します。

2.6.1 電圧プローブ

(1) 立上り時間

2.5項に記載したように、信号立上り時間の長短に応じて使用するプローブの周波数帯域を考慮する必要があります。考え方はオシロスコープの場合とまったく同じであり、ここでは省略します。

(2) 信号源インピーダンスとプローブ容量の立上り時間に対する影響

測定系の電気的な等価回路を図9-9に示します。R₁,C₁は信号源の出力インピーダンスと容量、R₂,C₂は プローブおよびオシロスコープの入力インピーダンスおよび入力容量を示します。

図9-9 測定系の電気的等価回路

RCフィルタの場合立上り時間(T,)は

 $T_r = 2.2 \times R \times C$

で表され、図9-9の場合、R,Cはそれぞれ下記となります。

$$R = \frac{R_1 \times R_2}{R_1 + R_2} \qquad C = C_1 + C_2$$

これより、以下のことが判ります。

- ① 信号源の出カインピーダンスが大きい場合は立上り時間が長くなる。
- ② プローブやオシロスコープの容量が大きい場合も同様に長くなる。

例えば、通常使用される受動形10:1プローブ(C_2 =9.5pF, R_2 =10MΩ)を用いて、信号源(R_1 =500Ω, C_1 =2pF)の 信号を測定した場合、プローブを接続しない時の立上り時間2.2nsecに対し、プローブ接続時の立上り時間は 12nsecとなり、大きな誤差を生じることになります。

(3) プローブの選択

測定目的に応じたプローブの選択条件および測定上の注意を表9-4に示します。

	則正日的に心しにノローノの迭折日女
--	-------------------

測定目的 項目	振幅の測定	立上り時間etc.	位相(差)
使用する プローブの 要件	・使用する周波数帯域で 入カインピーダンスが高い こと。	・信号源の立上り時間に対 し、十分な周波数帯域を 持っていること。	・入力容量が小さいこと。 ・ケーブル長、特性が揃って いること。
測定上の 注意	 ・パルス幅はプローブ、 オシロスコープの時定数の 5倍以上であること。 ・できるだけ低インピーダン スの信号源を測定点に選ぶ。 	・同左	・予めプローブ間の時間差 を測定しておくこと。 ※ 3.5フィートプローブの 遅延は5nsec

(4) 使用上の注意事項

信号を正しく測定するには、プローブの特性を理解し、適切なものを選定しなければなりません。 プローブを実際に使用する場合の注意事項を以下に示します。

- ① 測定目的に適したプローブを選択しているかどうか
- ② プローブの周波数補正は適正かどうか
- ③ 最大入力電圧(耐圧)は十分であるかどうか
- ④ プローブの負荷効果は影響していないか(最適な測定ポイントの選択)
- ⑤ グランド(アース線)の取り方に問題がないか
- ⑥ 機械的、物理的に無理がないかどうか

特に、高速スイッチング素子のパルス測定を行なう場合、グランドリードのインダクタンスとプローブ容量に より共振を生じることがあります、特に広帯域のオシロスコープほど顕著に発生します。この共振はグランド リードを短くし、プローブ先端でグランドを取ることで対策できます。必要なアダプタは通常アクセサリーとして 付属されています。

また、誘導によるノイズの混入を防ぐため、図9-10に示すように複数のプローブ個々にグランドリードを接続 する場合もあります。但しこの場合、グランドリードを接続する点の電位は等しくなければなりません。

図9-10 電圧プローブの接続

2.6.2 電流プローブ

電流プローブの種類と概要は2.3項に示した通りです。ここでは実際に使用する上での注意事項を主体に 説明します。

(1) 電流プローブの選択

電流プローブには前述の通り、直流電流プローブと交流電流プローブがあり、高速スイッチング動作時の 電流波形測定には耐ノイズ性に優れた後者が推奨されます。

交流電流プローブに直流、または低周波の交流電流を流すと、プローブ内のコアが飽和し、出力が得られなくなります。したがって、直流または低周波の交流を扱う回路に使用するIGBTのスイッチング動作を 測定するには、実際の動作を模擬するためのタイミング制御回路を製作,使用するなどの工夫が必要です。

- 2) 使用上の注意事項
 - 電流プローブ先端にはフェライトコアが収納されており、衝撃に対し極めて弱いので落下などのない よう取り扱いには注意してください。
 - ②定格を超えないよう注意してください。
 - 耐電圧 ・・・・・・回路電圧が高い場合は測定部に耐圧チューブをかぶせる。
 - A-S(電流積)・・・・・パルス電流定格を示す。過大な電流を流すとプローブが破壊する ことがあります。

●耐最大RMS電流・・・・・プローブ内トランス2次側回路の電力容量から制約されています。 したがって、これを越えると、プローブが焼損することがあります。

- ③ クリップ形の場合は確実にクリップして測定を行なってください。
- ④ 電流プローブを回路にクリップしたまま二次側を開放にしないでください。

(特にターミネータの無い場合は二次側に高電圧が発生します。)

⑤ 挿入インピーダンス

プローブを挿入することにより、一次側回路には挿入インピーダンスが生じます。挿入インピーダンスが 測定対象に影響を与えないことが重要となります。

プローブを理想トランスとした場合、挿入インピーダンスは図9-11に示すように表されます。

2.7 変流器の使用

電流プローブの適用範囲に制約があること、および測定のための部分的な変更が回路動作に及ぼす影響 を最小にするため、変流器を使用する場合があります。変流器の挿入位置と電流の測定方法は9.3項を 参照願います。

変流器の巻数比をNとし、一次電流を I_1 、二次電流を I_2 とすると、理想的な変圧器の場合には $I_2 = I_1 / N$ で表されますが、励磁電流 I_0 を考えると、

 $I_0 = I_1 - N \times I_2$

となります。励磁電流1₀は測定誤差となるため十分小さな値でなければなりません。変流器について はNを確認し、1₁, 1₂を測定して上式より1₀を求め、測定精度に問題がないか確認する必要があります。 また、変流器に使用するフェライトコアは機械的強度が小さいことから、落下などのないよう注意 してください。

第10章 IGBTモジュールのEMC設計

1. パワーエレクトロニクス機器のEMC概説	10-2
2. インバータにおけるEMI対策設計	10-4
3. IGBTモジュールの適用におけるEMI対策	10-11

本章では、IGBTモジュールを適用する際のEMC対策指針について説明します。

1. パワーエレクトロニクス機器のEMC概説

近年では、IGBTモジュールを使用したインバータ・UPSなどのパワーエレクトロニクス機器において、欧州の CEマーキングや国内のVCCI規格への対応など、EMC対策が必要不可欠となってきています。

EMCとは、Electro Magnetic Compatibility (電磁両立性)であり、これはEMI(Electro Magnetic Interference) と、EMS(Electro Magnetic Susceptibility)に分類されます。EMIとは電子機器が周辺機器に及ぼす悪影響で ありエミッションともいわれます。EMIには電源に漏洩する伝導性ノイズと、電磁波として放射される放射性 ノイズがあります。またEMSとは、周囲からの電磁妨害に対する電子機器の耐量・性能のことで、イミュニティ ともいわれています。これには、電磁波,静電気,雷サージなどの評価項目が挙げられます。これを簡単に あらわすと、図10-1のように整理できます。

IGBTモジュールとその周辺回路、およびパワー エレクトロニクス機器に対し、EMC性能という観点 から考えると、IGBTモジュールは数百V・数百A 単位の高電圧、大電流を500ns以下という高速で スイッチングすることが特徴ですので、伝導性・ 放射性EMIの低減が特にIGBTモジュールの アプリケーションにとっては重要となります。

本章では、IGBTモジュールの適用において トラブルとなりやすいスイッチングによる 他への影響、すなわちEMI特性について説明する とともに、対策方法などについて解説します。

図10-1 EMCとEMI/EMS

1.1 EMI性能

IGBTモジュールは一般産業用をはじめエアコン・冷蔵庫などの家電用機器,自動車,車両駆動システムなど 幅広い分野・容量の機器に適用されています。ここではIGBTモジュールの主要用途である汎用インバータ など、電動機の可変速駆動システムに関する規格について紹介します。

(1)伝導性エミッション(雑音端子電圧)

IEC61800-3において、汎用インバータが対象となるPDS(Power Drive System)では、雑音端子電圧の 限度値(QP値)は、図10-2のように規定しています。

規格における限度値には、商業地域での用途に適用されるカテゴリ(C1)、工業地域で使用される機器に 適用されるカテゴリ(C2,C3)があります。産業向けインバータはカテゴリC3をクリアするよう設計されています。

図10-2 IEC61800-3における雑音端子電圧規制値

(2) 放射性エミッション

放射性エミッション(放射ノイズ)に関する規格値を図10-3に示します。

図10-3 IEC61800-3における放射ノイズ規制値

なお、カテゴリ区分は次の図10-4のように定義されています。

2. インバータにおけるEMI対策設計

2.1 コモンモードノイズとノルマルモードノイズ

ノイズの伝播経路には、主にノルマルモードとコモンモードの二種類があります。

ノルマルモードノイズは正相雑音とも呼ばれ、IGBTのスイッチングに伴う急峻な電圧・電流変化が主回路内 で伝播し交流入力端子や出力端子に現れてくるノイズです。ノルマルモードノイズの経路を図10-5に示します。

一方、コモンモードノイズは同相雑音とも呼ばれ、スイッチングに伴いアースに対する電位変動が主回路と アース間やトランスなどに存在する浮遊容量を充放電させることにより、アース線を経路としてノイズ電流が 伝播します。この様子を図10-6に示します。

図10-6 コモンモードノイズの経路

実際の装置では、各相(例えばR/S/T相)の配線にインピーダンスのアンバランスがあるため、ノルマル モードノイズがアース線を介したコモンモードノイズへの転化が生じたり(図10-7)、また逆にコモンモード ノイズがノルマルモードノイズに変換されたりします。このため、実際のノイズスペクトルにおいてノルマル モード経路によるノイズとコモンモード経路によるノイズを分離することは非常に困難です。一般的な注意 事項としては、各相の配線はできるだけアンバランスさせない配慮が必要です。

図10-7 ノルマルモードからコモンモードノイズへの変換

2.2 インバータのノイズ対策

インバータシステムにおける一般的なノイズ対策例を図10-8に示します。市販のノイズフィルタやリアクトル など、対策部品を各部に挿入することによって、インバータシステムが発生するノイズ(主に高調波電流や 雑音端子電圧)を抑制することができます。

各部品の効果は、以下の通りです。

① 零相リアクトル

入出カラインに挿入するコモンモードの リアクトルです。数MHz帯までのノイズ抑制に 効果があります。

② アレスタ

電源から流入するコモンモード,ノルマル モードの誘導雷からインバータシステムを 保護するために設置します。

③ 入力フィルタ

L,CおよびRで構成され、電源系統側へ 流出するノイズを抑制します。ノイズ減衰量 など各種の製品が販売されていますので、 仕様や目的にあわせて選定してください。 また、設置方法によっては減衰効果が 劣る場合がありますので、取扱説明書に したがった配線,設置が必要です。

④ 出力フィルタ

モータに加わるサージ電圧の抑制や、 出カケーブルからの誘導ノイズ抑制に 使用します。

図10-8 インバータのノイズ対策例

上述のようなインバータ外部に設置するフィルタなどは一般に100kHz~数MHz帯でのノイズ抑制に効果が ありますが、それ以上の帯域(10MHz以上の雑音端子電圧や30MHz以上の放射ノイズ)に対しては抑制効果 が小さく、効果が期待できない場合があります。これは、後述するようにフィルタの周波数特性に限界がある ためで、広い周波数全体にわたりノイズを効果的に抑制するためには、それぞれの周波数帯に合わせた 最適なフィルタを導入する必要があります。

10MHz~50MHz付近に発生するノイズ要因のひとつは、インバータ本体内のIGBTモジュール周辺部の インダクタンスや寄生容量が原因となって、スイッチングに伴う共振が発生するためと考えられています。 以下の項では、IGBT周辺で発生するノイズのメカニズムと、その対策方法について説明します。 2.3 モジュール特性に起因するノイズの発生メカニズム

典型的なインバータシステムのブロック図を図10-9に示します。この図は交流電源を整流ダイオード により一旦直流に整流した後、インバータ部のIGBTを高周波でスイッチングすることにより交流に逆変換し、 モータを可変速駆動するものです。IGBTモジュールや整流ダイオードはヒートシンクに取付けますが、この ヒートシンクはインバータの本体をかねるケースもあり、安全上グランドに接地するのが一般的です。

図10-9 インバータシステム例

このシステム図において、ヒートシンクに取付けられた金属ベース面とIGBTチップなどの電気回路側とは、 高熱伝導性の絶縁基板によって絶縁していることを示しています。(モジュール内部の詳細構造については、 第1章を参照ください)また、インバータ部IGBT回路にはスパイク電圧抑制を目的としたスナバコンデンサが 接続されています。放射ノイズや雑音端子電圧のようなMHzオーダーの領域では、回路部品として現れない 寄生インダクタンス、寄生容量が大きな影響を及ぼす場合があります。

図10-10は、数100kHz~数10MHzという高周波帯域におけるインバータシステムの概略図を示しています。 高周波帯域では、IGBTモジュールや電気部品に存在する浮遊容量・浮遊インダクタンスが非常に大きな影響 を及ぼします。IGBTモジュール周囲の配線上には数10n~数100nHの浮遊インダクタンスが存在し、上述の 絶縁基板には数100pFの浮遊容量が存在しています。また、IGBTチップ自身のPN接合部には接合容量が 存在します。

図10-10 寄生のL·Cを考慮した等価回路

例えば、配線の浮遊インダクタンスが200nH,基板の浮遊容量が500pFであったとし、これがループ状になっていれば、そのループの共振周波数foは、

$$fo = \frac{1}{2\pi\sqrt{\text{LC}}} = \frac{1}{2\pi\sqrt{200\text{nH} \times 500\text{pF}}} \approx 16\text{MHz}$$

となります(図10-11)。

IGBTのスイッチングがトリガとなって、このループに 16MHzの共振電流が流れると、その影響が雑音端子 電圧や放射ノイズとなって現れます。上の例では、 IGBTモジュールの絶縁基板を介した16MHzのコモン モードノイズ電流が接地線に流出しますので、これが 電源側に伝播し雑音端子電圧のピークとなって現れ ます。この共振周波数が30MHz以上になると、放射 ノイズのピークとなって観測されることとなります。

図10-11 寄生インダクタンスと容量 との共振現象

各回路部品の浮遊容量・浮遊インダクタンスの例を表10-1に示します。

回路部品名称	浮遊C	浮遊L	備考
モジュールPN端子間	_	20~40nH	
IGBTチップ単体	100~200pF	—	電圧依存性が大きい
スナバコンデンサ		20~40nH	
内部絶縁基板	500~1,000pF	—	
電解コンデンサ	100pF	_	内部電極-取付け金属バンド間
鉄心入りリアクトル	50~200pF	—	数MHz以上はC成分
バリスタ	100~200pF	_	高耐圧品ほどCは小
モータ	13,000pF	—	3 ¢ 15kWモータの例
シールド付4芯ケーブル	数100pF	数100n~数uH	 1m当たり
配線バー	_	数100nH	10cm当たり概略100nH

表10-1 主回路構成部品の寄生L,C値の例

実際のシステムではこれらの要素が複雑に接続されており、意図しない寄生のLC共振回路が構成される こととなります。IGBTのスイッチングに伴いこれらLC回路において共振が発生し、雑音端子電圧や放射ノイズ のピークとなって測定されることとなります。

ー般的に、雑音端子電圧、放射ノイズそれぞれにおいてピークを発生させやすい共振ループを表10-2, 図10-12に示します。

No.	周波数	雑音端子/放射	ノルマル /コモン	経 路
1	1~4MHz	雑音端子	コモン	モータ容量~配線インダクタンス
2	5~8MHz	雑音端子	コモン	DCB基板容量と配線インダクタンス
3	10~20MHz	雑音端子	コモン	DCB基板容量と配線インダクタンス
4	30~40MHz	放射	ノルマル	デバイス容量~スナバコンデンサ

表10-2 インバータシステムにおける共振周波数とループの例

図10-12 表10-2における経路の例

システムの構成により、配線長(インダクタンス)や浮遊容量はさまざまに変化しますが、対象となるシステム に対する固有の浮遊L/Cを概算すると、おおよその共振周波数が推定できます。

2.4 モジュールの特性が影響する周波数帯

前述したように、汎用インバータなどのモータ駆動システムで対象となる伝導性ノイズの周波数帯域は、 150kHz~30MHzです。図10-13にインバータの雑音端子電圧測定例を示します。図10-13の波形からわかる ように、雑音端子電圧は150kHz付近が一番高く、周波数が高くなるほどなだらかに減衰する特性となります。 この雑音端子電圧スペクトルは、矩形波状のノイズ源(IGBTのスイッチング)におけるキャリア周波数(数kHz ~20kHz程度)の高調波成分が現れているため、IGBTモジュール自身のスイッチング特性にはほとんど影響 されません。これは、図10-14に示すようにIGBTモジュールスイッチング時の電圧の立上り・立下り時間は およそ50~200ns程度で、これを周波数に換算すると2~6MHzとなり、これ以下の周波数帯域では立上り・ 立下り時間の差には依存しないためです。

図10-13 汎用インバータの雑音端子電圧例

図10-14 IGBTの電圧波形と周波数スペクトル

また、放射ノイズ(30MHz~)の測定結果例を図10-15に示します。放射ノイズも雑音端子電圧と同様に、 規格周波数帯域の中で一番低い30MHz付近が一番高くなり、周波数が高くなるにつれて減衰する特性と なります。このように、IGBTのスイッチングによるノイズのスペクトルは、CPUクロックのような鋭いピーク ではなく、比較的ブロードな特徴があります。

図10-15 7MBR100U4B120の放射ノイズスペクトル(標準駆動条件)

3. IGBTモジュールの適用におけるEMI対策

3.1 伝導性ノイズ(雑音端子電圧)対策

3.1.1 フィルタの設置

伝導性ノイズ対策は交流電源入力側にフィルタ回路を設置し、インバータで発生したノイズ電流が電源側に 流出しないようにすることが一般的です。フィルタ回路はL・C要素で構成し、目標とする規格値に対し必要な 減衰量を得られるように、フィルタ回路のカットオフ周波数を設計します。またノイズ対策用フィルタは磁性体 メーカやコンデンサメーカなどから各種が市販されていますので、対応規格や必要な電流などに応じて選択 すると良いでしょう。

図10-16 3 Ø 200V/37kWインバータにおける雑音端子電圧測定結果例(QP値)

IEC61800-3カテゴリC2に適応すること狙って設計した入力フィルタの低減効果を図10-16に示します。 フィルタがない場合、150kHzにおいて125dBμV程度であった雑音端子電圧が、フィルタを挿入したことにより 70dBμVまで減衰しており、規格値に対して数dBのマージンをもってクリアすることができます。

3.1.2 フィルタを適用する場合の注意点

理想的なフィルタの場合、周波数が高くなるほど減衰量は大きくなりますが、実際のフィルタ回路では、 図10-17に示すように、ある程度の周波数以上では理想的な減衰特性が得られなくなる現象が生じます。 これは前述のように、フィルタ回路に使用する部品にも寄生のL,Cが存在するため、前項図10-16に示す 雑音端子電圧測定結果のように1MHz以上の周波数帯域で減衰効果が小さくなる傾向となります。 さらに10MHz付近の高い周波数帯域でピークが生じることによって規格に対するマージンがもっとも小さく なっています。測定環境によっては、この10MHz付近のレベルが上昇して規格値をオーバーする場合も 考えられます。

図10-17 理想的なフィルタと実際のフィルタの減衰特性

前項で述べた雑音端子電圧のピークが10MHz以上の帯域で生じるひとつの要因として、IGBTモジュールの 絶縁基板を介した共振が挙げられます。たとえば絶縁基板と主回路の定数が図10-11に示す定数であったと すると、16MHzで雑音端子電圧のピークが生じる事となります。10MHz以上の周波数で共振するループのLC 定数は数百pF,数百nHオーダーでIGBTチップの寄生容量,絶縁基板容量やパッケージ内部の配線インダクタ ンスが要因となっている場合があります。図10-18に、DCB基板を介した共振のコモンモード回路モデル例を 示します。

図10-18 IGBTの絶縁基板を介した共振の回路モデル例

図10-18は入力フィルタとして接続しているコンデンサのインダクタンスとインバータ側モジュールの基板 容量との共振、コンバータ・インバータモジュール間の共振現象を示しています。このように、ノイズ対策のため にフィルタやバリスタなどを追加すると、フィルタの寄生L・Cとの共振によりピークが生じる場合があるので、 注意が必要です。

3.1.3 IGBTモジュールへの雑音端子電圧対策

上述したような雑音端子電圧スペクトルの高周波帯域で発生しているピークを低減させるためには、

- スイッチングするIGBTのdV/dtを抑制する
- 共振ループのインピーダンスを上げて、共振電流を抑制する

ことが必要です。ただし、そのデメリットとして

- dV/dtを下げるとIGBTの損失が増大する
- L・Cの定数を増減させるだけでは共振周波数が移動する結果となり、ピーク値は

下がりにくい。また、構造上、物理上、寄生LC成分をなくすことは不可能。

が挙げられます。

3.1.3.1 ゲート抵抗の調整による雑音端子電圧の対策

図10-19に7MBR75U4B120を適用したインバータの雑音端子電圧スペクトル例(入力フィルタあり)を示し ます。図10-19ではゲート抵抗を標準値,2倍,3倍と増加させた場合、10MHz付近の雑音端子電圧ピークが5dB 程度抑制されたことがわかります。ただし、ゲート抵抗を2倍以上大きくしても、低減効果は小さくなって いますので、スイッチング損失の増加によるデメリットと併せて対策の効果を判断する必要があります。

3.1.3.2 フェライトコアによる共振の抑制

フェライトコアはノイズ対策用としてよく用いられる部品のひとつです。その等価回路は一般的にLRの 直列回路として示されます(図10-20)。

また、フェライトコアの磁性体としての特性(L成分: μ'、R成分: μ")は、図10-21のようになっています。

図10-21 フェライトコアのインピーダンス(L,R)特性例

このフェライトコアを上に述べたノイズのピークを生じる共振ループに挿入すると、以下のような 回路モデルになります。

ループの定数(共振周波数)に応じて、その周波数に最適なインピーダンス特性を持つフェライトコア材を 選定することにより、共振にダンピングをかけてノイズのピークを抑制することが可能です。

図10-23 コア対策前後での共振ループのインピーダンス特性

コア対策有無による共振ループのインピーダンス特性を図10-23に示します。共振点ではインピーダンスが 最低となり、大きな共振電流が流れるため雑音端子電圧にピークを生じます。コアを挿入することにより インピーダンスを上げ、共振にダンピングをかけることで雑音端子電圧を効果的に抑制することができます。

図10-24,10-25にコモンモード・フェライトコアをインバータ主回路に実装した対策例、および低減効果を示します。

図10-25 雑音端子電圧測定結果

未対策時のループインピーダンスは約8Ω程度ですので、これを30Ω程度までフェライトコアで増加させる ことにより約10dBのピーク低減を図ることができます。

ゲート抵抗での対策と異なり、コアを適用する場合はIGBTの損失が増加することなくノイズ対策が可能です。

3.1.4 IGBTの放射性ノイズ対策

放射性EMIノイズの主な要因はIGBTがターンオン(対向アーム側のFWDが逆回復)する際に生じる高い dv/dtがトリガとなって、半導体デバイスの接合容量と配線(主にモジュール内部配線とスナバコンデンサ間の 配線)上の浮遊インダクタンスで生じる高周波のLC共振によるものと考えられます(図10-26参照)。これは、 前述した雑音端子電圧におけるピークと同様の発生メカニズムです。

ー般に自由空間におかれた微小電流ループ(ここでは上述のLCループ)から放射される、周波数fにおける 遠方電界*Efl*は、下式(マクスウェルの波動方程式)で与えられます。

$$Ef = \frac{1.32 \times 10^{-14}}{r} \cdot S \cdot If \cdot \sin \theta \cdots \cdots (1)$$

r:ループからの距離, S:ループの面積、 *I*:ループの電流値, θ:ループ面からの角度

(1)式から、Efはループからの距離に反比例し、
ループ面積およびループ電流に比例することがわかります。
また、電流値Ifは、

$$If = \frac{E}{Z} \dots \dots \dots (2)$$

E:IGBTスイッチング波形の電圧スペクトル(図10-14参照) Z:ループのインピーダンス で与えられます。

図10-26 モジュールとスナバCで 構成されるループ

前記式より、放射ノイズを低減するためには、

- 1. ループからの距離を離す
- 2. ループ面積Sを小さくする

3. ループ電流を小さくする ……3a. スイッチング電圧のスペクトルを小さくする

3b. ループインピーダンスを増加させる

ことが考えられます。

ここで上記1は規格において、10mまたは3mの距離で測定することと規定されていますので、現実的な対策 は上記2ないし3となります。

3.1.4.1 ループ面積Sの低減

上述したように、スイッチング時に誘発される高周波ノイズ電流はデバイスの寄生容量とスナバコンデンサ で構成するLCループの共振電流です(図10-12の経路④)。2in1パッケージクラスの中・大容量モジュール では、モールド形のスナバコンデンサを端子に直にネジ止めし、ループの放射面積をできるだけ小さくする ことが必要です。また、これはスイッチング時のスパイク電圧抑制の観点からも有効です。

6in1,PIMタイプなど、ピン端子形モジュールではパワー基板に実装するケースがほとんどですが、スナバコンデンサはできるだけP/N端子ピン近くに配置することが重要です。

3.1.4.2 電圧のスペクトルを小さくする

前述したように、IGBT/FWDがスイッチングする際の電圧波形のスペクトルは図10-27に示すようになります。

図10-27 IGBTのスイッチング電圧波形のスペクトル

従来、ゲート抵抗を増加してスイッチング波形を鈍らせることが対策手法として一般的に適用されますが、 これは図10-27の*f2*を低周波化し、30MHz以上のスペクトルを低減させていることになります。図10-27に示す ように、*R*_gが小さく,電圧の立上り,立下り時間が短い(dv/dtが大きい)場合の30MHz成分E(1)に対し、*R*_gが 大きく,dv/dtが小さい場合、30MHz成分はE(2)のように小さくなります。E(1),E(2)は(2)式の E に相当します ので、結果的にdv/dtの低減はノイズ電流*I*を抑制することになります。

図10-28に放射ノイズのゲート抵抗依存性の一例を示します。仕様書に記載のゲート抵抗値に対し2倍程度 の値とすることで、大幅に放射ノイズを抑制できることがわかります。しかし、ゲート抵抗調整により放射ノイズ を抑制すると、スイッチングが遅くなる(dv/dtが小さくなる)ためスイッチング損失は悪化します。その結果、 装置の運転条件によっては温度が上昇し、ジャンクション温度が定格を越える可能性があるため、確認が 必要となります。

図10-28 放射ノイズのゲート抵抗依存性(7MBR100U4B-120)

3.1.5 まとめ

これまで述べてきたように、IGBTがスイッチングすることによって発生するEMI(特に10MHz以上の高周波 雑音端子電圧や放射ノイズのピーク)は、IGBT自身およびその周辺回路上に存在する浮遊L/Cの共振により 発生しています。原理上,物理上,これらの浮遊L/C成分はゼロにはできません。したがってノイズ対策の要諦 はこれら問題となるループの共振をいかに的確に発見、対策できるか、ということが重要です。

第11章 パワーモジュールの信頼性

1. 信頼性の基礎	11-2
2. 信頼性試験	11-4
3. パワーサイクル寿命	11-5

パワー半導体モジュールの市場は、汎用インバータ、サーボモータ制御、工作機械、エレベータなどにとど まらず、電気自動車や太陽光・風力・燃料電池発電システムなどの実用化に伴い、新たな用途へ拡がろうと しています。

富士電機はこれまで各種パワーモジュール製品を開発し、市場要求に答えてきました。今後は更なる市場の拡がりとともにこれらパワーモジュール製品に対する要求性能は、今以上に多様化,高度化する方向へ 進展すると考えられます。

このような要求に対応するにはパワーモジュールの信頼性確保に対し充分に注意を払う必要があります。 本章では、パワーモジュール、特にIGBTモジュールの信頼性に関して説明します。

1. 信頼性の基礎

半導体デバイスの故障率経時変化

ー般にIGBTモジュールなどの電子機器、電子部品の故障率は図11-1に示すようなバスタブカーブ形の 故障率カーブとなります。この故障率カーブは、初期故障期,偶発故障期,磨耗故障期の3種類の期間で 示されます。

図11-1 半導体デバイスの故障率経時変化

上記故障率カーブにおいて、半導体デバイスの1つであるIGBTモジュール製品の初期故障は、IGBT,FWD中 の微細な欠陥,DCBの欠陥,信号線を接続するワイヤの接触などのごく微細な欠陥や人為的ミスなどに起因 して発生します。このような欠陥やミスはIGBT,FWDチップ設計,モジュール構造設計,チップ製造工程設計, 組立工程設計において、様々な設計手法を用いた品質向上活動を継続して行なうことで低減することが可能 です。しかし、設計段階でこれらを完全になくすことは非常に困難ですので、スクリーニング試験(出荷試験) が必要となります。富士電機においてもスクリーニング試験を適用することによって初期故障率の低減に 取り組んでいます。

故障率カーブの偶発故障期は初期故障品が除去されたことで、その故障率はほぼ一定に落ち着きます。 この故障率が一定となる期間はIGBTモジュールや他の部品などで構成されるシステム全体の使用条件や 環境によって変わり、システム固有の信頼度に相当します。この期間に生じる偶発故障は、過電圧(G-E間, C-E間),過電流,過熱など、製品仕様書に記載の最大定格を超える過剰なストレスが印加された場合に起こる ことが一般的です。これより、偶発故障期での故障率低減のためにはシステムの最悪運転条件において各種 特性が最大定格を超えないよう設計・確認する必要があります。そのために使用電圧,使用電流などの運転 条件は仕様書に記載の最大定格に対し、ディレーティングして使用することを推奨いたします。

故障率カーブの磨耗故障期は製品寿命による故障期であり、磨耗や疲労によって故障を引き起します。 したがって、IGBTモジュール製品の長期信頼性を確保するためには、磨耗故障に達する前に製品寿命となる ように設計する必要があります。

当社では次節以降に示す長期信頼性試験を設計段階で検証し、品質確認を行なっています。特にパワー サイクル故障モデルについては、第3節に示す ΔT_{vi} パワーサイクル(ΔT_{vi} -P/C)と ΔT_{c} パワーサイクル (ΔT_{c} -P/C)の2モデルについて寿命確認を行なっています。IGBTモジュール製品寿命設計を行う際、 本パワーサイクル寿命を考慮し、寿命内で設計してください。また製品寿命は使用環境,使用方法によって 大きく変わりますので考慮の上、設計してください。

2. 信頼性試験

富士電機では長期信頼性確保のために、各種信頼性試験を実施し設計検証を行なっています。下記の 表11-1,11-2に富士電機の第7世代IGBTモジュールであるXシリーズについて、代表的な信頼性試験一覧の 抜粋を示します。なお詳細につきましては納入仕様書を参照願います。

Test cate- gories	- Test items		Test methods and conditions		Reference norms JEITA ED-4701 (Aug2013 edition)	Number of sample	Accept- ance number
	1	High Temperature	Storage temp.	125±5°C	Test Method 201A	5	(0:1)
		Storage	Test duration :	1000 hr.			
	2	Low Temperature	Storage temp.	-40±5°C	Test Method 202A	5	(0:1)
		Storage	Test duration :	1000 hr.			
	3	Temperature	Storage temp.	85±2°C	Test Method 103A	5	(0:1)
		Humidity Storage	Relative humidity :	85±5%	Test code C		
			Test duration :	1000 hr.			
nent Tests	4	Temperature Cycle	Test temp. :	— High temp. 125+15/-0°C	Test Method 105A	5	(0:1)
				Low temp40+0/-10°C			
iron			Minimum soak time	15 min.			
Env			Number of cycles	100 cycles			
	5	Thermal Shock	Test temp. :	High temp. 100+10/-2°C	Test Method 307B Condition code B	5	(0:1)
				Low temp. 0+2/-10°C			
		Used liquid : Water with ice and boiling water					
			Dipping time	5 min. par each temp.			
			Transfer time	10 sec.			
			Number of cycles	10 cycles			

表11-1 Xシリーズでの信頼性試験(環境試験)

Test cate- gories	t - Testitems s		Test methods and conditions		Reference norms JEITA ED-4701 (Aug2013 edition)	Number of sample	Accept- ance number	
	1	High Temperature Reverse Bias	Test temp.	:	Τ _y = 175±5°C	Test Method 101A	5	(0:1)
	2	(IGBT/FWD chip)	Bias voltage	:	$V_{\rm CE} = 0.8 \times V_{\rm CES}$			
			Bias method	:	Applied DC voltage to C-E			
					$V_{\rm GE} = 0 V$			
			Test duration	:	1000 hr.			
		High Temperature	Test temp.	:	T _{vj} = 175±5°C	Test Method 101A	5	(0:1)
ts		Bias (for Gate)						
			Bias voltage	:	$V_{\rm GE}$ = +20 V or -20 V			
e Tee			Bias method	:	Applied DC voltage to G-E			
Endurance					V _{ce} = 0 V			
			Test duration	:	1000 hr.			
	3	Temperature	Test temp.	:	85±2°C	Test Method 102A	5	(0:1)
		Humidity Bias	Relative humidity	:	85±5%	Condition code C		
		(IGBT/FWD chip)	Bias voltage	:	$V_{\rm CE} = 0.8 \times V_{\rm CES}$			
			Bias method	:	Applied DC voltage to C-E			
					$V_{\rm GE} = 0 \ V$			
			Test duration	:	1000 hr.			
	4	Intermitted	ON time	:	2 sec.	Test Method 602	5	(0:1)
		Operating Life	OFF time	:	18 sec.			
		(Pow er Cycle)	Test temp.	:	ΔT_{y} = 100±5 deg.			
		(for IGBT)			$T_{y} \leq 175^{\circ}$ C, $T_{s} = 75\pm5^{\circ}$ C			
			Number of cycles	:	60000 cycles			

表11-2 Xシリーズでの信頼性試験(耐久試験)

3. パワーサイクル寿命

IGBTモジュールは使用動作条件に応じて温度の上昇,下降が生じます。温度の上昇,下降によってIGBT モジュールの内部構造は熱ストレスによる応力を受け疲労,劣化が進みます。この疲労,劣化は温度の上昇と 下降の変動幅に大きく依存するため、運転条件や環境条件によって寿命が異なります。熱ストレスによる 寿命はパワーサイクル寿命(パワーサイクル耐量)と呼ばれます。パワーサイクル寿命は温度変化 Δ 7に 対する繰り返しサイクル数の関係を表わしたパワーサイクル寿命カーブから算出できます。そのカーブは 大きく分けて2種類あります。

1つは Δ T_{vi}パワーサイクル (Δ T_{vi}-P/C)寿命カーブで、素子のジャンクション温度が急激に上昇,下降する ことで生じる寿命カーブです。故障モードはチップ表面のアルミワイヤ接合部の劣化またはチップ直下の 半田接合部の劣化による故障が支配的となります。

もう1つはΔ_{Tc}パワーサイクル(Δ_{Tc}-P/C)寿命カーブで、ジャンクション温度の上昇,下降によるケース温度 (主にベース温度)_{Tc}の変化によって生じる寿命カーブです。故障モードは絶縁基板DCBと銅ベース間の接合 に使用している半田接合部の劣化による故障が支配的となります。

Δ T_{vi}-P/C, Δ T_c-P/Cそれぞれの測定方法とパワーサイクル寿命カーブについて次頁以降に記載します。

3.1 Δ T_{vi}パワーサイクル(Δ T_{vi}-P/C)寿命カーブ

図11-2にΔ T_{vi}パワーサイクル(Δ T_{vi} -P/C)試験の通電パターンを示します。図11-3および図11-4にΔ T_{vi}パ ワーサイクル試験時の等価回路図とTcおよびT。測定位置の概略図をそれぞれ示します。ΔTviパワーサイク ル試験では、素子のジャンクション温度を比較的短い時間の周期で急激に上昇、下降させます。したがってシ リコンチップとDCB間およびシリコンチップとアルミワイヤ間で温度差が生じるため、それらの間に熱ストレス が発生します。このような理由からΔ T_{vi}パワーサイクルは主にアルミワイヤとチップの接合およびシリコン チップ下半田部分の寿命を示します。

図11-3 Δ T_{vi}パワーサイクル試験の等価回路

図11-5にIGBTモジュールの ΔT_{vj} パワーサイクル寿命カーブ例として、Uシリーズ,Vシリーズのカーブを示します。図11-5の T_{vj} min=25°Cのラインはヒートシンクの温度を25°Cに固定し、チップ温度を変化させたときの寿命サイクル数を表しています。たとえば ΔT_{vj} =50°Cの場合ではヒートシンク温度が25°Cでジャンクション温度が75°Cに達する条件となります。一方 T_{vj} max=150°Cのラインはジャンクション到達温度を150°Cに固定しヒートシンク温度を変化させたときの寿命サイクル数を表しています。たとえば ΔT_{vj} =50°Cの場合ではヒートシンク温度が100°Cでチップ温度が150°Cに達する条件となります。このように同一の ΔT_{vj} でもヒートシンク温度およびジャンクション到達温度が高いほど、その寿命は短くなります。

実際の装置における寿命設計では使用装置の運転条件でΔ T_{vi}を確認し、Δ T_{vi}パワーサイクル寿命カーブ から求められるパワーサイクル寿命が目標設計製品寿命より充分長いことを確認してください。

図11-5 Δ T_{vi}パワーサイクル寿命カーブの例

たとえば図11-6に示すモータの加速,減速,起動や停止が頻繁に起こる装置では最大ジャンクション温度 T_{ij} と ヒートシンク温度 T_s の差を ΔT_{ij} として(図11-2参照)、 ΔT_{ij} パワーサイクル寿命を求めてください。また求めた 寿命が目標設計製品寿命より充分長いことを確認してください。ただし、このような運転条件時の寿命設計は 定常運転時の ΔT_{ij} から求めないよう注意してください。加速,減速,起動や停止時では定常運転時よりも大きな 温度変化が生じるため、そのジャンクション温度変化により寿命が決まることによります。また、0.5Hzなどで 低速運転をするインバータシステムでは低速運転時のジャンクション温度変化が大きくなるので、このときの ΔT_{ij} に充分注意して製品寿命を設計してください。

装置の運転1周期内に複数の加減速運転や低速運転がある場合、後述の「1周期に対して複数の温度 上昇がある場合のパワーサイクル寿命計算」に記載の計算方法にしたがってパワーサイクル寿命を計算の 上、寿命設計をしてください。

図11-6 実際のインバータにおける動作(例)

3.2 ΔT_{c} パワーサイクル (ΔT_{c} -P/C)寿命カーブ

図11-7に弊社で実施の ΔT_{c} パワーサイクル(ΔT_{c} -P/C)の通電パターンを示します。

図11-8に6in1モジュールを ΔT_c パワーサイクル試験する時の等価回路図を示します。 ΔT_c パワーサイクル 試験時には、すべての相(6in1モジュールの場合には6相、2in1モジュールの場合では2相)に通電し、ケース (銅ベース)全体の温度を上下させます。このとき接合温度 T_{vj} とケース温度 T_c の温度差が小さくなるように、 ケース温度 T_c を比較的長い時間の周期で上昇、下降させる点が ΔT_{vj} パワーサイクル試験時の試験条件と 異なります。このような温度変化が生じる場合は、ベースと絶縁基板DCB間に大きな応力ひずみが支配的に なることから、 ΔT_c パワーサイクル寿命は主に絶縁基板DCB下半田接合部の寿命を示します。

Δ *T*_cパワーサイクルの破壊モードは次のように 説明することができます。

ケース温度 T_c を上昇,下降させた場合、絶縁 基板DCBとベースの熱膨張係数差によって、 その間の半田接合部に最も大きな応力ひずみ が生じます。温度変化を繰り返すと応力ひずみ により半田接合部に亀裂が発生します。亀裂が 進行し、シリコンチップが配置された絶縁基板 DCBの下まで到達すると、シリコンチップの放熱 が悪化(熱抵抗 R_{th} が上昇)するため、ジャンク ション温度 T_{vi} が上昇し、最終的にはジャンク ション温度 T_{vi} が T_{vi} maxを越え、熱破壊に至る 可能性があります。

図11-9にIGBTモジュールのΔ*T*_cパワーサイクル

図11-7 Δ Tcパワーサイクルの通電パターン

図11-8 Δ T_cパワーサイクル試験の等価回路

カーブを示します。接合部温度とケース温度の差が小さく、ケース温度の上昇、下降が頻繁に起こる場合は、 Δ *T*_cパワーサイクルカーブから求めた寿命回数が要求される目標設計製品寿命より充分長いことを 確認して設計してください。

図11-9 Δ T_cパワーサイクル寿命の例

3.3 装置の運転1周期に対して複数の温度上昇がある場合のパワーサイクル寿命計算

IGBTモジュールのパワーサイクル寿命はパワーサイクル中の温度上昇幅(とその最大温度)に依存します。 したがってインバータ運転1周期に対しIGBTモジュールの温度上昇ピークが1回の場合にはパワーサイクル 寿命曲線から算出した回数がIGBTモジュールの寿命回数となります。しかしインバータ運転1周期に対し IGBTモジュールの温度上昇ピークが複数回ある場合は複数回の温度上昇の影響を受けるため、パワー サイクル寿命回数は短くなります。

以下に、複数の異なる温度上昇ピークがある場合のパワーサイクル寿命回数計算方法について示します。 インバータ運転1周期に対してn回の温度上昇がある場合、k回目(k=1, 2, 3, …, n)の温度上昇に対する パワーサイクル寿命回数をPC(k)とすると合成パワーサイクル寿命回数は下記の式で表わすことができます。

$$PC = 1 / \left(\sum_{k=1}^{n} \frac{1}{PC(k)} \right)$$

n=4回,各温度上昇ピークに対応するパワーサイクル回数が3.8 x 10⁶,1.2 x 10⁶,7.6 x 10⁵,4.6 x 10⁵の場合

$$PC = 1 \left(\frac{1}{3.8 \times 10^6} + \frac{1}{1.2 \times 10^6} + \frac{1}{7.6 \times 10^5} + \frac{1}{4.6 \times 10^5} \right) = 2.2 \times 10^5$$

と計算できます。

この様にして計算したパワーサイクル寿命回数と運転モード1周期(時間)の積からパワーサイクル寿命 時間を求めることができます。上記の運転モード1周期が1800秒(30分)とした場合

2.2x10⁵ x 1800秒/(60秒 x 60分 x 24時間 x 365日) = 12.55 ≒12年6ヶ月 が寿命時間と計算できます。